{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "6febc445-889c-4db1-b014-6a346ab9a49f",
"metadata": {
"tags": [
"remove_cell"
]
},
"outputs": [],
"source": [
"# Setting up the Colab environment. DO NOT EDIT!\n",
"import os\n",
"#import warnings\n",
"#warnings.filterwarnings(\"ignore\")\n",
"\n",
"try:\n",
" import otter, pingouin\n",
"\n",
"except ImportError:\n",
" ! pip install -q otter-grader==4.0.0, pingouin\n",
" import otter\n",
"\n",
"if not os.path.exists('walkthrough-tests'):\n",
" zip_files = [f for f in os.listdir() if f.endswith('.zip')]\n",
" assert len(zip_files)>0, 'Could not find any zip files!'\n",
" assert len(zip_files)==1, 'Found multiple zip files!'\n",
" ! unzip {zip_files[0]}\n",
"\n",
"grader = otter.Notebook(colab=True,\n",
" tests_dir = 'walkthrough-tests')"
]
},
{
"cell_type": "markdown",
"id": "cea3b0b0",
"metadata": {},
"source": [
"# Walkthrough"
]
},
{
"cell_type": "markdown",
"id": "71197956",
"metadata": {},
"source": [
"## Learning Objectives\n",
"At the end of this learning activity you will be able to:\n",
" - Practice using `pg.normality` and `pg.qqplot` to assess normality.\n",
" - Practice using `pg.linear_regression` to perform multiple regression.\n",
" - Interpret the results of linear regression such as the coefficient, p-value, R^2, and confidence intervals.\n",
" - Describe a _residual_ and how to interpret it.\n",
" - Relate the _dummy variable trap_ and how to avoid it during regression.\n",
" - Describe _overfitting_ and how to avoid it."
]
},
{
"cell_type": "markdown",
"id": "230f0ff0",
"metadata": {},
"source": [
"As we discussed with Dr. Devlin in the introduction video, this week and next we are going to look at HIV neurocognitive impairment data from a cohort here at Drexel.\n",
"Each person was given a full-scale neuropsychological exam and the resulting values were aggregated and normalized into Z-scores based on demographically matched healthy individuals.\n",
"\n",
"In this walkthrough we will explore the effects of antiretroviral medications on neurological impairment.\n",
"In our cohort, we have two major drug regimens, d4T (Stavudine) and the newer Emtricitabine/tenofovir (Truvada).\n",
"The older Stavudine is suspected to have neurotoxic effects that are not found in the newer Truvada.\n",
"We will use inferential statistics to understand this effect."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "a0a08b85-58d9-4963-828b-8b515b8470f8",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import seaborn as sns\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"\n",
"import pingouin as pg\n",
"\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "2d3c415d-aff6-401d-9ffd-61abe1112897",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
sex
\n",
"
age
\n",
"
education
\n",
"
race
\n",
"
processing_domain_z
\n",
"
exec_domain_z
\n",
"
language_domain_z
\n",
"
visuospatial_domain_z
\n",
"
learningmemory_domain_z
\n",
"
motor_domain_z
\n",
"
ART
\n",
"
YearsSeropositive
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
male
\n",
"
62
\n",
"
10.0
\n",
"
AA
\n",
"
0.5
\n",
"
0.6
\n",
"
0.151646
\n",
"
-1.0
\n",
"
-1.152131
\n",
"
-1.364306
\n",
"
Stavudine
\n",
"
13
\n",
"
\n",
"
\n",
"
1
\n",
"
male
\n",
"
56
\n",
"
10.0
\n",
"
AA
\n",
"
-0.5
\n",
"
1.2
\n",
"
-0.255505
\n",
"
-2.0
\n",
"
-0.086376
\n",
"
-0.348600
\n",
"
Truvada
\n",
"
19
\n",
"
\n",
"
\n",
"
2
\n",
"
female
\n",
"
51
\n",
"
10.0
\n",
"
AA
\n",
"
0.5
\n",
"
0.1
\n",
"
0.902004
\n",
"
-0.4
\n",
"
-1.139892
\n",
"
0.112215
\n",
"
Stavudine
\n",
"
9
\n",
"
\n",
"
\n",
"
3
\n",
"
female
\n",
"
47
\n",
"
12.0
\n",
"
AA
\n",
"
-0.6
\n",
"
-1.2
\n",
"
-0.119866
\n",
"
-2.1
\n",
"
0.803619
\n",
"
-2.276768
\n",
"
Truvada
\n",
"
24
\n",
"
\n",
"
\n",
"
4
\n",
"
male
\n",
"
46
\n",
"
13.0
\n",
"
AA
\n",
"
-0.4
\n",
"
1.3
\n",
"
0.079129
\n",
"
-1.3
\n",
"
-0.533607
\n",
"
-0.330541
\n",
"
Truvada
\n",
"
14
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" sex age education race processing_domain_z exec_domain_z \\\n",
"0 male 62 10.0 AA 0.5 0.6 \n",
"1 male 56 10.0 AA -0.5 1.2 \n",
"2 female 51 10.0 AA 0.5 0.1 \n",
"3 female 47 12.0 AA -0.6 -1.2 \n",
"4 male 46 13.0 AA -0.4 1.3 \n",
"\n",
" language_domain_z visuospatial_domain_z learningmemory_domain_z \\\n",
"0 0.151646 -1.0 -1.152131 \n",
"1 -0.255505 -2.0 -0.086376 \n",
"2 0.902004 -0.4 -1.139892 \n",
"3 -0.119866 -2.1 0.803619 \n",
"4 0.079129 -1.3 -0.533607 \n",
"\n",
" motor_domain_z ART YearsSeropositive \n",
"0 -1.364306 Stavudine 13 \n",
"1 -0.348600 Truvada 19 \n",
"2 0.112215 Stavudine 9 \n",
"3 -2.276768 Truvada 24 \n",
"4 -0.330541 Truvada 14 "
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = pd.read_csv('hiv_neuro_data.csv')\n",
"data['education'] = data['education'].astype(float)\n",
"data.head()"
]
},
{
"cell_type": "markdown",
"id": "ac31172e-1108-4f2c-a322-07e1f91d0942",
"metadata": {},
"source": [
"Before we start, we need to talk about assumptions.\n",
"\n",
"Basic linear regression has a number assumptions baked into itself:\n",
" - **Linearity**: The relationship between the independent variables (predictors) and the dependent variable (outcome) is linear. This means that changes in the predictors lead to proportional changes in the dependent variable.\n",
" - **The relationship between the independent variables and the dependent variable is additive**: The effect of changes in an independent variable X on the dependent variable Y is consistent, regardless of the values of other independent variables. This assumption might not hold if there are interaction effects between independent variables that affect the dependent variable.\n",
" - **Independence**: Observations are independent of each other. This means that the observations do not influence each other, an assumption that is particularly important in time-series data where time-related dependencies can violate this assumption.\n",
" - **Homoscedasticity**: The variance of error terms (residuals) is constant across all levels of the independent variables. In other words, as the predictor variable increases, the spread (variance) of the residuals remains constant. This is evaluated at the **end** of the fit.\n",
" - **Normal Distribution of Errors**: The residuals (errors) of the model are normally distributed. This assumption is especially important for hypothesis testing (e.g., t-tests of coefficients) and confidence interval construction. It's worth noting that for large sample sizes, the Central Limit Theorem helps mitigate the violation of this assumption. This is evaluated at the **end** of the fit.\n",
" - **Minimal Multicollinearity**: The independent variables need to be independent of each other. Multicollinearity doesn't affect the fit of the model as much as it affects the coefficients' estimates, making them unstable and difficult to interpret.\n",
" - **No perfect multicollinearity**: Also called the _dummy variable trap_. It states that none of the independent variables should be a perfect linear function of other independent variables. We'll talk more about this when we run into it.\n",
"\n",
"Biology itself is highly non-linear.\n",
"That doesn't mean we can't use linear assumptions to explore biological questions, it just means that we need to be mindful when interpretting the results."
]
},
{
"cell_type": "markdown",
"id": "a6ab9af5-a5ea-451c-b267-fcc0b0b1afd7",
"metadata": {},
"source": [
"## Exploration"
]
},
{
"cell_type": "markdown",
"id": "9e1954ae-3cb3-4167-8705-e9123c1e9d40",
"metadata": {},
"source": [
"Let's start by plotting the each variable against EDZ."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "d8dd6aa8-655e-4d6b-a977-1e6d4ed91181",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAHqCAYAAADrpwd3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eXgb150n/H5PbQBBLBRFUSQleRFkSwpDOXZstcedlpQ46azqiZK5nRnnmet4Mp62Wt19X2fuez1RJpnOm4kT356bmds3bvkdT17Hb0/cb3wn1ttRFnenk1jqtDqRHS9iaC0mZFuiuIkiiYUgUMs57x8ASYAEyAJYQBWA3+d59NgkC3WWqjq/UwdV5zAhhAAhhBBCCCGEEEIIIYQQQlaQ3M4AIYQQQgghhBBCCCGEEOJVNIhOCCGEEEIIIYQQQgghhJRBg+iEEEIIIYQQQgghhBBCSBk0iE4IIYQQQgghhBBCCCGElEGD6IQQQgghhBBCCCGEEEJIGTSITgghhBBCCCGEEEIIIYSUQYPohBBCCCGEEEIIIYQQQkgZNIhOCCGEEEIIIYQQQgghhJShuJ2BeuKcY3R0FKFQCIwxt7NDCCGE1JwQAslkEn19fZAkb313TnGZEEJIq/FyXAYoNhNCCGk9dmNzSw2ij46OYtu2bW5ngxBCCKm7K1euYOvWrW5nowjFZUIIIa3Ki3EZoNhMCCGkda0Vm1tqED0UCgHIVUo4HHY5N4QQQkjtJRIJbNu2bTEGegnFZUIIIa3Gy3EZoNhMCCGk9diNzS01iL7wOlo4HKYOASGEkJbixVeyKS4TQghpVV6MywDFZkIIIa1rrdjsvUnYCCGEEEIIIYQQQgghhBCPoEF0QgghhBBCCCGEEEIIIaQMGkQnhBBCCCGEEEIIIYQQQsqgQXRCCCGEEEIIIYQQQgghpAwaRCeEEEIIIYQQQgghhBBCyqBBdEIIIYQQQgghhBBCCCGkDBpEJ4QQQgghhBBCCCGEEELKoEF0QgghhBBCCCGEEEIIIaQMGkQnhBBCCCGEEEIIIYQQQsqgQXRCCCGEEEIIIYQQQgghpAwaRCeEEEIIIYQQQgghhBBCylDczgAhhBCAc4Gh0QSm0zo6Axr6+8KQJOZ2thzT7OUjhLiD2hZST3S+EdJY6JolTqDziBCygAbRCSHEZaeHp3DsZAyxyRQMS0CVGaLdQRzeH8U9O7rczt66NXv5CCHuoLaF1BOdb4Q0FrpmiRPoPCKEFKLpXAghxEWnh6dw9Pggzo0l0O5T0B3yod2n4NxYEkePD+L08JTbWVyXZi8fIcQd1LaQeqLzjZDGQtcscQKdR4SQ5WgQnRBCXMK5wLGTMaSyJnrCfvhVGZLE4Fdl9IR9SGUtHDsZA+fC7axWpdnLRwhxB7UtpJ7ofCOksdA1S5xA5xEhpBQaRCeEEJcMjSYQm0xhQ0ADY8Xz6jHG0BFQEZtMYWg04VIO16fZy0cIcQe1LaSe6HwjpLHQNUucQOcRIaQUGkQnhBCXTKd1GJaAJpduin2yBIMLTKf1OufMGc1ePkKIO6htIfVE5xshjYWuWeIEOo8IIaXQIDohhLikM6BBlRl0i5f8e9biUCWGzoBW55w5o9nLRwhxB7UtpJ7ofCOksdA1S5xA5xEhpBQaRCeEEJf094UR7Q5iJm1AiOL59IQQmE0biHYH0d8XdimH69Ps5SOEuIPaFlJPdL4R0ljomiVOoPOIEFIKDaITQohLJInh8P4ogj4Z44ks5g0LnAvMGxbGE1kEfTIO749CktjaO/OgZi8fIcQd1LaQeqLzjZDGQtcscQKdR4SQUphY/rVaE0skEohEIojH4wiH6RtDQog3nB6ewrGTMcQmUzC4gCoxRLuDOLw/int2dLmdvXVr9vJ5nZdjn5fzRryP2hZST3S+Ead4PfZ5PX920TVLnEDnESGtwW7so0F0QgjxAM4FhkYTmE7r6Axo6O8LN9WTDc1ePi/zcuzzct5IY6C2hdQTnW/ECV6PfV7PXyXomiVOoPOIkOZnN/YpdcwTIYSQMiSJYWBrxO1s1Eyzl48Q4g5qW0g90flGSGOha5Y4gc4jQsgCmhOdEEIIIYQQQgghhBBCCCmDBtEJIYQQQgghhBBCCCGEkDJoEJ0QQgghhBBCCCGEEEIIKYMG0QkhhBBCCCGEEEIIIYSQMmgQnRBCCCGEEEIIIYQQQggpgwbRCSGEEEIIIYQQQgghhJAyaBCdEEIIIYQQQgghhBBCCCmDBtEJIYQQQgghhBBCCCGEkDJoEJ0QQgghhBBCCCGEEEIIKYMG0QkhhBBCCCGEEEIIIYSQMmgQnRBCCCGEEEIIIYQQQggpgwbRCSGEEEIIIYQQQgghhJAyaBCdEEIIIYQQQgghhBBCCCmDBtEJIYQQQgghhBBCCCGEkDJoEJ0QQgghhBBCCCGEEEIIKYMG0QkhhBBCCCGEEEIIIYSQMmgQnRBCCCGEEEIIIYQQQggpgwbRCSGEEEIIIYQQQgghhJAyFLczQEi9cS4wNJrAdFpHZ0BDf18YksTczhYhhBBCCFkD9eMIIV5CbRIhhLQOGkQnLeX08BSOnYwhNpmCYQmoMkO0O4jD+6O4Z0eX29kjhBBCCCFlUD+OEOIl1CYRQkhroelcSMs4PTyFo8cHcW4sgXafgu6QD+0+BefGkjh6fBCnh6fcziIhhBBCCCmB+nGEEC+hNokQQloPDaKTlsC5wLGTMaSyJnrCfvhVGZLE4Fdl9IR9SGUtHDsZA+fC7awSQgghhJAC1I8jhHgJtUmEENKaaBCdtISh0QRikylsCGhgrHiOOsYYOgIqYpMpDI0mXMohIYQQQggphfpxhBAvoTaJEEJaEw2ik5YwndZhWAKaXPqU98kSDC4wndbrnDNCCCGEELIa6scRQryE2iRCCGlNNIhOWkJnQIMqM+gWL/n3rMWhSgydAa3OOSOEEEIIIauhfhwhxEuoTSKEkNbUMIPoX/va13DXXXchFAqhu7sbH//4x3HhwgW3s0UaRH9fGNHuIGbSBoQonptOCIHZtIFodxD9fWGXckhaHecCgyNxnLx4DYMjcZpDkRBCiGfVO2ZRP44Q4iWFbRIXHPO6hWTGwLxugQtObRIhhDQpxe0M2HXy5EkcOXIEd911F0zTxBe+8AX87u/+Ll5//XW0t7e7nT3icZLEcHh/FEePD2I8kUVHQIVPlpC1cp2coE/G4f1RSBJbe2eEOOz08BSOnYwhNpmCYQmoMkO0O4jD+6O4Z0eX29kjhBBCFrkRs6gfRwjxkoU26eFnX8XFiRSEEBACYCw3J/rGdo3aJEIIaUIN8yT6888/j8985jPo7+/HbbfdhqeeegqXL1/Gr3/9a7ezRhrEPTu68OihAezuDSGdNTGZyiKdNbG7N4RHDw3QYCVxxenhKRw9PohzYwm0+xR0h3xo9yk4N5bE0eODOD085XYWCSGEEADuxizqxxFCvIvlFxjNDZrT+6SEENKcGuZJ9OXi8TgAoLOz0+WckEZyz44u3L19I4ZGE5hO6+gMaOjvC9NTAsQVnAscOxlDKmuiJ+zPd74BvySjJyxhPJHFsZMx3L19I52jhBBCXOWFmEX9OEKIFyy0hxYXuLU7iKwpYHIORZLgUxgmkjr14QkhpAk15CC6EAKf+9zn8J73vAfvfOc7y26XzWaRzWYXf04kEvXIHvE4SWIY2BpxOxuEYGg0gdhkChsC2uJgxALGGDoCKmKTKQyNJuicJU2B4jIhjcsrMYv6cYQ4i2Jz5QrbQ0mS0KYBgLz4d+rDE0JIc2qY6VwK/dEf/RHOnj2Lv/qrv1p1u6997WuIRCKL/7Zt21anHBJCyNqm0zoMS0CTSzfFPlmCwQWm03qdc0ZIbVBcJqRxUcwipDlRbK4ctYeEENKaGm4Q/Y//+I/x/e9/Hz//+c+xdevWVbf9/Oc/j3g8vvjvypUrdcolIYSsrTOgQZUZdIuX/HvW4lAlhs6AVuecEVIbFJcJaVwUswhpThSbK0ftISGEtKaGmc5FCIE//uM/xvHjx/HCCy/g5ptvXvMzPp8PPp+vDrkj5XAuaN5KQsro7wsj2h3EubEkesJS0evxQgjMpg3s7g2hvy/sYi4JcQ7FZUKc4Ub/imIWIc2pUWKzl+4rqT0khJDW1DCD6EeOHMEzzzyDv/7rv0YoFML4+DgAIBKJoK2tzeXckVJOD0/h2MkYYpMpGJaAKjNEu4M4vD+Ke3Z0uZ09QlwnSQyH90dx9PggxhNZdARU+GQJWYtjNm0g6JNxeH+UvngihBCyyK3+FcUsQohbvHZfSe0hIYS0JiaEEG5nwo7lCxgteOqpp/CZz3zG1j4SiQQikQji8TjCYfpWuJZOD0/h6PFBpLImNgQ0aLIE3eKYyXcqHj00QAPphOQV3RhwAVWiL5yIc7wc+7ycN0K8yAv9K4pZhKyP12Of1/LnhXZvtbxRe0gIIY3PbuxrmCfRG2SsnyD3qt2xkzGksiZ6wv7FL0D8koyesITxRBbHTsZw9/aN9O08IQDu2dGFu7dv9MwrqoQQQrzHK/0rilmEkHrxSrtXDrWHhBDSWhpmEJ00jqHRBGKTKWwIaCveIGCMoSOgIjaZwtBoAgNbIy7lkhBvkSRG1wMhhJCyvNS/ophFCKkHL7V75VB7SAghrUNyOwOk+UyndRiWgCaXPr18sgSDC0yn9TrnjBBCCCGkMVH/ihDSaqjdI4QQ4iU0iE4c1xnQoMoMusVL/j1rcagSQ2dAq3POCCGEEEIaE/WvCCGthto9QgghXkKD6MRx/X1hRLuDmEkbK+ayF0JgNm0g2h1Ef5/7C9UQQgghhDQC6l8RQloNtXuEEEK8hAbRieMkieHw/iiCPhnjiSzmDQucC8wbFsYTWQR9Mg7vj9KCK4QQQgghNlH/ihDSaqjdI4QQ4iU0iE5q4p4dXXj00AB294aQzpqYTGWRzprY3RvCo4cGcM+OLrezSAghhBDSUKh/RQhpNdTuEUII8QrF7QyQ5nXPji7cvX0jhkYTmE7r6Axo6O8L05MChBBCCCFVov4VIaTVULtHCCHEC2gQndSUJDEMbI24nQ1CCCGEkKZB/StCSKuhdo8QQojbaDoXQgghhBBCCCGEEEIIIaQMGkQnhBBCCCGEEEIIIYQQQsqgQXRCCCGEEEIIIYQQQgghpAyaE50QQjyAc0GLJRFCGhK1X4QQQloVxUBCCGkdNIhOCCEuOz08hWMnY4hNpmBYAqrMEO0O4vD+KO7Z0eV29gghpCxqvwghhLQqioGEENJaaDoXQghx0enhKRw9PohzYwm0+xR0h3xo9yk4N5bE0eODOD085XYWCSGkJGq/CCGEtCqKgYQQ0npoEJ0QQlzCucCxkzGksiZ6wn74VRmSxOBXZfSEfUhlLRw7GQPnwu2sEkJIEWq/CCGEtCqKgYQQ0ppoEJ0QQlwyNJpAbDKFDQENjBXPncgYQ0dARWwyhaHRhEs5JISQ0qj9IoQQ0qooBhJCSGuiQXRCCHHJdFqHYQlocumm2CdLMLjAdFqvc84IIWR11H4RQghpVRQDCSGkNdEgOiGEuKQzoEGVGXSLl/x71uJQJYbOgFbnnBFCyOqo/SKEENKqKAYSQkhrUtzOACFO4lxgaDSB6bSOzoCG/r4wJImt/cEWy1M9OVn+ZqvL/r4wot1BnBtLoicsFb0OKoTAbNrA7t4Q+vvCFe232eqJEOI9tWq/KmWaHCfOjuHqbBpbOgI4uKcXilKfZ0TcTLuVUYwjhCxXrl2oVXtRyxhIscV7KO4QQhbQIDppGqeHp3DsZAyxyRQMS0CVGaLdQRzeH8U9O7ooTy5wsvzNWJeSxHB4fxRHjw9iPJFFR0CFT5aQtThm0waCPhmH90cr6qQ1Yz0RQrynFu1XpZ48FcPjL8SQnDfAkXu98ss/GMKRA1E8uC9as3TdTruVUYwjhCxXrl3Yd0sXTr0xVZP2olYxkGKL91DcIYQUYkKIllkyOpFIIBKJIB6PIxyu7ZNRpL5OD0/h6PFBpLImNgQ0aLIE3eKYyXdiHj00UPcg58U81ZOT5W/2uizqnHEBVaquc9bs9USq4+XY5+W8EXucar8q9eSpGB57/gIsLqDIDBIDuABMS0CWGB750M6aDTi4mXYroxhHmoXXY5/X81eoXLswmcxgLmshoMnYHPbXrL1wMgZSbPEeijuEtA67sY+eRCcNj3OBYydjSGVN9IT9i6/T+SUZPWEJ44ksjp2M4e7tG+v22pUX81RPTpa/Ferynh1duHv7xnW9JtgK9UQI8R4n2q9KmSbH4y/EYHEBTWGQWO41d4kBEuPQTYHHX4jhgXtudvwVeDfTbmUU4wghy5VrF3ySBNMSsHjun0/JTbdSi/bCqRhIscV7KO4QQkqhFpg0vKHRBGKTKWwIaEXz0QEAYwwdARWxyRSGRhMtnad6crL8rVKXksQwsDWC/bduwsDWSMWdsVapJ0KI96y3/arUibNjSM4b+Sf1iruyEpOgyAzJeQMnzo41VdqtjGIcIWS5cu1CRufQLQ4lv/Bnxlha/LMW7YUTMZBii/dQ3CGElEKD6KThTad1GJaAJpc+nX2yBIMLTKf1ls5TPTlZ/lavS7uongghreLqbDo3V2yZcQqJASK/XTOl3cooxhFClivXLpicQ4h8eyxyPxfyYntBscV7KO4QQkqhQXTS8DoDGtT8kwalZC0OVWLoDGgtnad6crL8rV6XdlE9EUJaxZaOACTk5oothQuA5bdrprRbGcU4Qshy5doFRZLA8vOJM5b7uZAX2wuKLd5DcYcQUgoNopOG198XRrQ7iJm0geXr5AohMJs2EO0Oor+vfgvjeDFP9eRk+Vu9Lu2ieiKEtIqDe3oRalNhWgJcFN/ccsFhWgKhNhUH9/Q2VdqtjGIcIWS5cu2CX5Ogybl50TVZgl9dGvLwantBscV7KO4QQkqhQXTS8CSJ4fD+KII+GeOJLOYNC5wLzBsWxhNZBH0yDu+P1nXBDy/mqZ6cLH8t6pJzgcGROE5evIbBkTh4ucc+6shunspt1wznnBePCyHEexRFwpEDUcgSg24KmJznBhl4bvE1WWI4ciBak8XXlqdtWBZMi8OwrJqnXcg0OY6/fBXf/NkbOP7yVZhm6SflmkVhjBuLZzCT1pGYNzCT1jEWzzREjCOEOKtc3zdj5OZDlyUGWZKQMbnn+8S1imuV9q1bvS9eWP6h0QT+YN92x++tWr2OCWl0TCz/Wq2JJRIJRCIRxONxhMP0jWGzOT08hWMnY4hNpmBwAVViiHYHcXh/FPfs6KI8ucDJ8ju1r6L9WAKq7P4xsZsnO9s16jnnxePSLLwc+7ycN+J9T56K4fEXYkjOGxDIveoealNx5EAUD+6L1jTtLzx3Ft99aQRmwc2vIjF86s6t+Oon9tQ07cJyc+SeiKlXud3WymUnzcPrsc/r+VuuXN933y1dOPXGVEP1iZ2Ma5X2rVu9L16u/E6eR61ex4R4md3YR4PopKlwLjA0msB0WkdnQEN/X9j1pwy8mKd6crL8693X6eEpHD0+iFTWxIaABk2WoFscM2kDQZ+MRw8N1L0DYzdPleS90c45Lx6XZuLl2OflvJHGYJocJ86O4epsGls6Aji4p7fmT4EvtFnJjAFFksCFgMQYTM4R8qs1bbOePBXDY89fgMUFFJlBys/7a1q5JxUf+dDOph1MLowVbaoMll80cN6wEPQpFCtIw/B67PN6/kop1/dttD4x4Excq7Rv3ep98bXK/x8//k5E2rR1nUetXseEeJ3d2KfUMU+E1JwkMQxsjbidjSJezFM9OVn+9eyLc4FjJ2NIZU30hP1gLNfx8UsyesISxhNZHDsZw93bN9atc203T3tv6qwo7410znnxuBBCGoeiSDh0x5a6pVfYZvVG2hbbLCA3R2ot2yzT5Hj8hRgsLqApDBLLDapIDJBY7pX/x1+I4YF7bq75Fwn1Vi5WAECkxvVOCPG+cn3fRuoTL1hvXKu0b93qfXE75f9fT13C0w/sXdeDYK1cx4Q0k+bqYRNCSBlDownEJlPYENCKbr4BgDGGjoCK2GQKQ6MJz+XpxNkxz+XdKV48LoQQUo6bbdaJs2NIzhv5J9CLu/ASk6DIDMl5AyfOjjmettsoVhBCiD2Vtpet3r7Wo/ytXseENBMaRCeEtITptA7DEtDk0s2eT5ZgcIHptO65PF2dTXsu707x4nEhhJBy3Gyzrs6mc/OAl3lITWKAyG/XbChWEEKIPZW2l63evtaj/K1ex4Q0ExpEJ4S0hM6ABlVm0C1e8u9Zi0OVGDoDmufytKUj4Lm8O8WLx4UQQspxs83a0hGAhNwc6KVwkVuEbktHwPG03UaxghBC7Km0vWz19rUe5W/1OiakmdAgOmkqnAsMjsRx8uI1DI7EwcvdaZKW098XRrQ7iJm0geXrKQshMJs2EO0Oor+vfgso2c3TwT29i9txzjGvW0hmDMzrFjjnruTdKV48LoQQUk5hm1Xv9vjgnl6E2lSYloDFLXAhYHGR/68F0xIItak4uKfX8bTdRrGCEEL3efZU2l42evu63vOiHuVv9DomhCyhQXTSNE4PT+H+p87gD/7yJfw/n30Nf/CXL+H+p87g9PCU21kjHiBJDIf3RxH0yRhPZDFvWOBcYN6wMJ7IIuiTcXh/tK6LudjNk6JIOLw/ClkCLk6m8Nb1OYzMzOOt63O4OJmCLKHueXeKF48LIYSUs9BmudEeK4qEIweiYAzQLSBrcugWz/8XYAw4ciDadIuKAhQrCGl1dJ9nX6XtZSO3r06cF/UofyPXMSGkWPP1sklLOj08haPHB3FuLIF2n4LukA/tPgXnxpI4enyQOlgEAHDPji48emgAu3tDSGdNTKaySGdN7O4N4dFDA7hnR1eD5Enkn2JojidwvHhcCCHEnvq2x/19EUTaVCy/zWYAIm0q+vsidcmHGyhWENKa6D6vcpW2l43Yvjp5XtSj/I1Yx4SQlZhY/j5JE0skEohEIojH4wiH6VWZZsG5wP1PncG5sQR6wv6iFa+FEBhPZLG7N4SnH9hL3+4SALlzZmg0gem0js6Ahv6+sOvnxmp5KjzHN4d9yBoCJudQJAk+lWEioTfFOe7F49IMvBz7vJw3Qkpxsz0uSjvkQzxjwrA4VFlCxK9gItkcsWAtFCtIo/N67PNS/ug+b30qbS8bpX2t1XlRj/I3Sh0T0mrsxj6ljnkipCaGRhOITaawIaAVBVAAYIyhI6AiNpnC0GgCA1ub9wktYp8kMc+dC6vlqfAcl5iENg0A5MW/N8s57sXjQgghhdxsj4vSliRsWLYAWbPEgrVQrCCkddB93vpU2l42Svtaq/OiHuVvlDomhJRG07mQhjed1mFYAppc+nT2yRIMLjCd1uucM0KcQec4IYR4g5vtMcUCQkiroXaPlELnBSHELTSIThpeZ0CDKjPoFi/596zFoUoMncue2CKkUdA5Tggh3uBme0yxgBDSaqjdI6XQeUEIcQtN50IaXn9fGNHuIM6NJdETllbMiTabNrC7N4T+Pnfm9KN5z5xT77r0yrGr9Bz3Sr4r1aj5JsRtrXzt1LvsbvY5CtPeHGIr5kSvZ3+nlc85Qkj92G1zd/eEMDgSb+o2qVy72wrt8fIy7u4Jefr+fzWtcLwIaWY0iE4aniQxHN4fxdHjgxhPZNERUOGTJWQtjtm0gaBPxuH9UVeC0+nhKRw7GUNsMgXDElBlhmh3EIf3R2kF7grVuy69dOwqOce9lO9KNGq+CXFbK187bpTdzT7HQtpHnnkZr48lIQr+dhW5OdHr0d9p5XOOEFJfdtrcfbd04YGnX2zqNqlcu7vvli6cemOqZct+ZTrtufv/1VD8JKTxMSGEWHuz5uCllcaJ84qCEhdQJXeD0unhKRw9PohU1sSGgAZNlqBbHDP5wP7ooQEKljbVuy69euzWOse9mu+1NGq+G4WXY5+X89YIWvnacbvsbvU5njwVw9d+fB68RO9dYsDnP7wLD+6L1ix9t+udkGbg9djnxfyVa3P33dKF7/zqclO3SeXa3clkBnNZCwFNxuawv6XKvlDGT//WDUtfInjg/n81FD8J8Ta7sY+eRCdN454dXbh7+0ZPvB7FucCxkzGksiZ6wv7FV8z8koyesITxRBbHTsZw9/aNnvuG3GvqXZdePnarneNezvdqGjXfhLitla8dL5TdjT6HaXI8/kIMQgCaDDAmQQiAMUAIDsMCHn8hhgfuuRmK4vyyR16od0JIayrV5u7uCeGBp19s6japXLvrkySYloDFc/98Sm5Kk1Yoe2EZT70xhafuvwvnxpOu3/+vhuInIc2DFhYlTUWSGAa2RrD/1k0Y2BpxLQgNjSYQm0xhQ0ArmqMNABhj6AioiE2mMDSacCV/jaTeden1Y1fuHPd6vstp1HwT4rZWvna8UvZ69zlOnB1Dct6AIjPIkgyJMcgSy/9XhiIzJOcNnDg7VpP0vVLvhJDWtLzNPTeebPo2qVy7m9E5dItDyS+umTGWFths9rIDxWU8N570xP3/aih+EtI8aBCdkBqYTuswLAFNLn2J+WQJBheYTut1zlnjqXddNuqxo3wT0lpa+dpp1bJfnU2DIzdtSykSA0R+u1po1XonhHhTK7RJ5cpocg4h8u2+yP1cqJnLvqCRythMZSGk1dEgOiE10BnQoOafDCgla3GoEkNnQKtzzhpPveuyUY8d5ZuQ1tLK106rln1LRwASUHI+dOR/z/Lb1UKr1jshxJtaoU0qV0ZFksBYvt1nuZ8LNXPZFzRSGZupLIS0OhpEJ6QG+vvCiHYHMZM2sHztXiEEZtMGot1B9Pd5Y7EeL6t3XTbqsaN8E9JaWvnaadWyH9zTi1CbCtMS4KL4RpwLDtMSCLWpOLintybpt2q9E0K8qRXapHJl9GsSNDk3L7omS/CrS8M6zV52oPHK2ExlIaTV0SA6aRicCwyOxHHy4jUMjsTByz2K5QGSxHB4fxRBn4zxRBbzhgXOBeYNC+OJLII+GYf3R12bs82puqzHMam0LtebJ7eOnd18l9vO6+ecaXIcf/kqvvmzN3D85aswTd4Q+SbEq1r52ikuewYTiQwmEvOYSGQwnsg0bdkVRcKRA1HIEkPWFMga1tI/U0CWGI4ciNZkUVGguN7H4hnMpHUk5g3MpHWMxZu33gu52RdtpH4wIfXglThYzbVp9zPlypgxeH59DAZZkpAxeUVld7I9Kbcvr96T1aPs9SqLE3kjhFSGieVfhTWxRCKBSCSCeDyOcJi+5Wskp4encOxkDLHJFAxLQJUZot1BHN4fxT07utzOXllF+eYCquR+vp2qy3ofEzt16WSe6nns7ObbznZePOeePBXD4y/EkJw3cvP5Agi1qThyIIoH90U9m+9m4eXY5+W8NYpWvna+8NxZfPelEZgFN4aKxPCpO7fiq5/Y42LOauvQ47/AK1fiK35/+7YIjh95T83Tt9OmNyM3+6KN2g8mpXk99nk9f8u5GQeruTbX/ZmCMu67pQun3piqqOw1u18q2FdRvjx0T1aPsldzHJ0+VylmEFI5u7GPBtGJ550ensLR44NIZU1sCGjQZAm6xTGTNhD0yXj00ICngwHnAkOjCUyndXQGNPT3hV17SsupunTrmKxWl7XIUz2Ond18V1I+L51zT56K4bHnL8DiAorMIOXnbzSt3FOTj3xo5+Kgi5fy3Uy8HPu8nLdG0orXzkLbYnIBRcrNBS4AmDw3kF7YtjSTLzx3Ft85c6Xs3z+9d1tNv0AojEVtqgyWX9Ru3rAQ9Cme75NVy82+aKP3g8lKXo99Xs9fKW7EwWquzfVcz+XKWEnZnWxPyu1rIpFFWjfR7pPRHfJ75p6sHmVfz3F0CsUMQqpjN/YpdcwTIRXjXODYyRhSWRM9YT8YywUYvySjJyxhPJHFsZMx3L19o2cHDCSJYWBrxO1sOFaXbh6TcnVZqzzV+tjZzffemzorKp9XzjnT5Hj8hRgsLqApDBLLTTEgMUBiHLop8PgLMTxwz81QFMkz+Sak0bTatVPYtvgK2hYAkKWVbUuz0HUL331pZPFnVhDOFh6J+e5LI/gPH+uHpsmOp18uZgFARIiG6JNVw81+TzP0gwmph3rHwWquzfVez+XKaLfsTrYn5fblYxIszmFxAdMS8KkSGJjr92T1KPt6j6MTKGYQUnvNc2dBmtLQaAKxyRQ2BLSimzUAYIyhI6AiNpnC0GjCpRw2Dqfq0ovHxIt5ssNuvk+cHWvI8p04O4bkvJF/Ar043EhMgiIzJOcNnDg75lIOCSGNqFXblidOXVqcumZZKFj82eQCT5y6VJP0GzXWrpeb5W7VOifE66q5Nt2+np1Mv9y+MgaHbuXma9ctjoy+tAi2m21WPcpezb6c5uW8EdIsaBCdeNp0WoeRX3W8FJ8sweAC02m9zjlrPE7VpRePiRfzZIfdfF+dTTdk+a7OpnPz5ZZ50EFiuekXrs6m65ktQkiDa9W25e3pOUe3q1Sjxtr1crPcrVrnhHhdNdem29ezk+mX25fJOYTIx2GR+7naNJxUj7JXsy+neTlvhDQLGkQnntYZ0KDmv8kuJWtxqBJDZ0Crc84aj1N16cVj4sU82WE331s6Ag1Zvi0dAUjIzYFeChe5eYy3dATqmS1CSINr1bblxs52R7erVKPG2vVys9ytWueEeF0116bb17OT6ZfblyJJYPn1jxjL/VxtGk6qR9mr2ZfTvJw3QpoFDaITT+vvCyPaHcRM2sDyNXCFEJhNG4h2B9Hf1xiL3rjJqbos3A/nHPO6hWTGwLxugXNe9THhXGBwJI6TF69hcCQOXm50pIZlczJPdhTVpVhWl2KpLg/u6a2ofHby7dQ2qzm4pxehNhWmJcBFcWeOCw7TEgi1qTi4p7ei/RJCitW6rfJa+q3atjy0bzuU/OP3QiD3uH3+30JoUCSGh/Ztr0n6XumTZTImvvDcID79336JLzw3iEzGrGl6bpbbK3VOCCmOdVwIbN9U2bVp93re3ROqSUx18h6uXFn8qgRNlmBaAprMICBK3tvUo80qd7xqVXbAXrtcyz4TxQxCao8WFiWeJkkMh/dHcfT4IMYTWXQEVPhkCVkrF+yCPhmH90dpYQwbnKrLhf08/OyruDiZQmF8ZgzobNcqPianh6dw7GQMsckUDEtAlRmi3UEc3h+1tXp4Lc6T9ebJjqK6nEhBCAGRf3KDMYaN+bpUFMl2+ezk26lt1qIoEo4ciOKx5y9ANwUUmUPKP51iWgKyxHDkQLSpFv4jpN7q0VZ5Lf1WbVs0Tcan7tyK75y5AiA3fr7cp+7cWpNFRQFv9Mk+++0z+On5a4s//wOu4ztnLuPeXZvwrc/srUmabpbbC3VOCCkd6zYGNcgSbF+bdq7nfbd04YGnX6xJTHXyHm61ssiSBIlZyJgcb1+fK3lvU+s2q9zxsjivadnXapdr3WeimEFI7TXX3QVpSvfs6MKjhwawuzeEdNbEZCqLdNbE7t4QHj00UJdBgmZRm7oU+W+6q/sW/fTwFI4eH8S5sQTafQq6Qz60+xScG0vi6PFBnB6esrUfJ8vmVJ4qx/KLwOSfNCz4i53y2cm3U9vY9eC+KB750E5EAio4FzAsAc4FIgEVj3xoJx7cF3W2CglpIe61Ve6n36pty0f39CHoKz1IHvTJ+Oievpqm72afbPkAeqGfnr+Gz377TM3SdrPc1A8mxF3lYt1YPAsA6I34bF+bq13Pn/6tG/CdX12uY0xd3z1cubLcuLEN4TYVUv6epty9Ta2UO15vX59HYt4Az5e5FmVf7djXq89EMYOQ2mJi+XseTSyRSCASiSAejyMcpldYGg3nAkOjCUyndXQGNPT3helb1Cqtpy45F7j/qTM4N5bA5rAPWUPA5ByKJMGnMkwkdOzuDeHpB/auuc/CffWE/UWriAshMJ7I2t6XE2WrVZ7spLU55EPWLKhLhWEiubIuy5XPTr539YQACJwfT65rm2rKb5ocJ86O4epsGls6Aji4p7fpnhL1Ki/HPi/nzevq2VZ5Mf0FrdS2FNb5pnYV1+dM6BaHJkvY2K7g2pxZlzpfyEs9+2SZjIldf/o3a253/k8/CL+/di/autkXpX5w8/B67PN6/urJXv86iP/5g7swO2/YvjaXX8+7e0J44OkXaxpTnbyHK1eWjjYVf/Y3F3B+3P69jZPKHS8hBN6cmkNatxDQJPRE2mBx4WjZVzv2bvSZKGYQUhm7sY+mcyENQ5IYBrZG3M5GU1hPXQ6NJhCbTGFDQIPEJLRpALD0VFxHQEVsMoWh0cSaaRTuq7AzAeRe+atkXwvWe57UIk920pIke3VZrnx28n1hPAkBse5tqim/okg4dMcW29sTQlZXz7bKi+kvaKW2pbDOFUXG5khxN74jwOpS50D9+2Rf+dE529t99RMDNcuHm31R6gcTUn92Yt2la3OQGMP+WzfZ3u/y63lwJF7zmOrkPVy5sgyOxHHpWmX3Nk4qd7wyBoducSgyg24JMDCECr5wdaLs1eQLqF2fiWIGIbXRnI/qEEJqZjqtw7AENLl08+GTJRhcYDqt13VfTqlnnupdl7rFYZjr36bex4QQspLb7afb6beiVq7zt6bnHN2OEELsqFe7W490miWNatI3OYcQgMRyC3GbvHhRcuozEULsokF0QkhFOgMaVJlBt3jJv2ctDlVi6Axodd2XU+qZp3rXpSZLUJX1b1PvY0IIWcnt9tPt9FtRK9f5TZ3tjm5HCCF21KvdrUc6zZJGNekrkgSWX4CcsdzPXshXvdInhDiHBtGJ6zgXGByJ4+TFaxgciYPzlpmmvyJeqaf+vjCi3UHMpA1wzjGvW0hmDMzrFjjPrfwd7Q6iv2/tORQL97V8eQYhREX7ckot8lTu2DmZlp197ewJYVdPaN3b1PuYEGKXV9rJenC7/XQ7fS+o9/nmpTqvd9m/+JHdjm5XrVZqYwhpJLW6NuvV7tYjHS+lsbsnVPJ4rfc4lkvfr0rQZAlm/mlwv7Y0DNYIfSaKPYR4R0PNiX7q1Cn82Z/9GX79619jbGwMx48fx8c//nG3s0XW4fTwFI6djCE2mYJhCagyQ7Q7iMP7o7RydAEv1ZMkMRzeH8XDz76Ki5MpFPYDGAM62zUc3h+1tXDJwr6OHh/EeCKLjoAKnywha+UG44M+2fa+nOJ0ntY6dk6lZSfff3ggCgDr3qbex4QQO7zUTtaD2+2n2+m7zY3zzSt17kbZ/X4F9+7ahJ+ev1Z2m3t3barpoqKt1sYQ0ihqeW3Wq92tRzpeSWPfLV144OkXVxyvfbd04dQbU+s6jqulL0sSZCk3L3rG4A3TZ6LYQ4i3MLH8qzAP+/GPf4x/+Id/wB133IFPfvKTFQ+i00rj3nJ6eApHjw8ilTWxIaBBy8/HPJMPJI8eGqDAAG/W0+nhKTz87KuYntMhhIDIvxrHGENnu4b//PvvqihPRZ0DLqBK7ncOnMiT3WPnZPnt7MupbUhj8HLscypvXmwn68Xta9Xt9N3g9vnmZp27XfbPfvtMyYH0e3dtwrc+s7dm6bpdbtJcvByXAe/nr1C9rs16tbv1SMfNNPbd0oXv/OryiuM1mcxgLmshoMnYHPav+ziulv7iQH0D9Jko9hBSP3ZjX0MNohdijNEgegPjXOD+p87g3FgCPWF/0SrVQgiMJ7LY3RvC0w/sbdqn2OzwYj0V5mlz2IesIWByDkWS4FMZJhJ6VXniXGBoNIHptI7OgIb+vrDrx349ear02DlZfjv7cmob4n1ejn1O5M2L7WS9uX2tup1+PXnlfHOjzr1S9kzGxFd+dA5vTc/hps52fPEju2v6BLpXyk2ah5fjMuD9/C2o97VZr3a3Hum4kcbunhAeePrFFcdLQODNa3NI67lB9Ju72pf+to7jWK6MbvdZ7KZPsYeQ+rIb+xpqOpdKZbNZZLPZxZ8TiYSLuSGFhkYTiE2msCGgFQUEIPcFSUdARWwyhaHRBAa2RlzKpfu8WE+FeZKYhDYNAOTFv1ebJ0linjvW68lTpcfOyfLb2ZdT2xBSiVrEZS+2k/Xm9rXqdvr15JXzzY0690rZ/X4FX/3EQM32v5xXyk1IrTTqPXO9r816tbv1SMeNNAZH4iWPV0bn0K3cNCu6xZExONq03L3leo5juTK63Wexmz7FHkK8qakXFv3a176GSCSy+G/btm1uZ4nkTad1GPmFPUrxyRIMLjCd1uucM2/xYj15MU9eRPVEyEq1iMt0rZF6auXzrVXL3qrlJq2jUe+Z6dpsLOWOl8k5hAAkBgiR+7lQqx5HOr8J8aamHkT//Oc/j3g8vvjvypUrbmeJ5HUGNKj5b5tLyVocqsTQGdDqnDNv8WI9eTFPXkT1RMhKtYjLdK2Remrl861Vy96q5Sato1HvmenabCzljpciSWAM4Pk1thSpeIiqVY8jnd+EeFNTD6L7fD6Ew+Gif8Qb+vvCiHYHMZM2sHxafiEEZtMGot1B9Pe19jHzYj15MU9eRPVEyEq1iMt0rZF6auXzrVXL3qrlJq2jUe+Z6dpsLOWOl1+ToMkSzPxT1351aYiqlY8jnd+EeFNTD6IT75IkhsP7owj6ZIwnspg3LHAuMG9YGE9kEfTJOLw/WrRIBucCgyNxnLx4DYMjcXDekGviVqS4njKYTeuIz+uYTesYT2RK1lM98zQWz2AmrSMxb2AmrWMs7k6eCtX7PCmXXjXneCMyTY7jL1/FN3/2Bo6/fBWmWfppCUJqpVWuNVJavdv8ovMtnsHVmTQuT8/h6kwa43WMgW60vV7sk9QDtTGEeJNX7kla8R61kN3yl2tLM0ZuPnRZyv2LzxsVxZZy6Tf6PQrFHkK8iYnlX2t5WCqVwvDwMADg9ttvxze+8Q28973vRWdnJ2644YY1P98oK423ktPDUzh2MobYZAoGF1Alhmh3EIf3R3HPjq7S21kCqlx6u2b15KkYHn8hhuS8AQGAAQi1qThyIIoH90VdzxNH7hs5t/NU7/PETnp2z/FG5MVzgKzk5djnZN6a+VojpbnZN/jst8/gp+evrfj9vbs24Vuf2VvTtN1ue73YJ6kHamOIU7wclwHv5285N9vEVr9Hrab85drSGza04Ye/Ga8otpRLv3BfjX6PQrGHkPqwG/saahD9hRdewHvf+94Vv7///vvx7W9/e83PN1qHoFVwLjA0msB0WkdnQEN/X7joG9XTw1M4enwQqayJDQENmixBtzhm0gaCPhmPHhpo6gCyUP5kxkBAUyAxBi4E0rqFkF9xpfyFx6RNlcHyC8HMGxaCPvfzVI/zpJL01jrHG9GTp2J47PkLsLiAIjNI+bkMTUtAlhge+dDOhuukNisvxz6n89aM1xopzc2+wReeO4vvnCk/Z/Cn927DVz+xpyZpu932erFPUk/UxhAneDkuA97PXyE370noHrX68i9vS+PzOv79//mbimJLufRHZ+cxp1sAALVJ7lEo9hBSe3Zjn1LHPK3bgQMHVswHRRqfJDEMbI2U/BvnAsdOxpDKmugJ+8FYLlj4JRk9YQnjiSyOnYzh7u0bmzKQFJa/N9K2WH4AiLQJV8pf7pgAQER4K0+1Ok8qTW+1c7wRmSbH4y/EYHEBTWGQWG5mMIkBEuPQTYHHX4jhgXtuhqLQrGGkfprtWiOludk30HUL331pZPHnghCIhS7qd18awX/4WD80TXY0bbfbXi/2SeqN2hhCvMPNexK6R11f+QvbUs4F7n/qTEWxpVz6PiZh3sgNoDMAMmNgjDX8PQrFHkK8o3FaDtKShkYTiE2msCGgFQVUAGCMoSOgIjaZwtBowqUc1pYXy0958mYd1NOJs2NIzhv5pyCLw4jEJCgyQ3LewImzYy7lkBDSzNxsg584dQlmfr7VZUkv/mxygSdOXXI8bbfb3laPfYSQ6l1LZjEzp8NycL5wN9ukVm8PnSx/Nfsq95nZeQOFp1jh2Ub3KIQQJ9AgOvG06bQOI79Sdyk+WYLBBabTep1zVh9eLD/lyZt1UE9XZ9O5+QXLPFgjsVyn9epsup7ZIoS0CDfb4Len5xzdrhJut72tHvsIIdXjQmAmrePKdBrTDg2mu9kmtXp76GT5q9lXuc8Y1tLioQJLb4gtoHsUQsh60SA68bTOgAZVZtCt0qtpZy0OVWLoDGh1zll9eLH8lCdv1kE9bekIQAJQ7v6Hi9wrlFs6AvXMFiGkRbjZBt/Y2e7odpVwu+1t9dhHCFk/LgRm0zouT6dxPZWFWaY9scPNNqnV20Mny1/Nvsp9Ri0YVGdY+cYY3aMQQtaLBtGJp/X3hRHtDmImbayYD18Igdm0gWh3EP193l70plpeLH9hnjjnmNctJDMG5nULnPOq88S5wOBIHCcvXsPgSBy8xChBuW2K8iSW5UmszJOdtOym55XjUgvlyn9wTy9CbSpMS4CL4s4rFxymJRBqU3FwT68b2W5ods9NQrzENDmOv3wV3/zZGzj+8lWYZvWDInZU2uY76aF926HkHwVf/oTbws+KxPDQvu2Op7287eVCwOICXIi6tL2F9W6YBkam07h0LYWR6TQM02ia2EcIqT2RfzL9p+cm8f3XRvHK2zMV93nc7I/XMg5V2hd0o+/oZN1Xs69yn+loU4ve1iocQ1+Mk34VN3UFPNnX9uqxp/sTQpY01MKipPVIEsPh/VEcPT6I8UQWHQEVPllC1sp1ToI+GYf3R5tywRbAm+VfyNPDz76Ki5OpokEExoDOdq3iPJ0ensKxkzHEJlMwLAFVZoh2B3F4f3RxJfa1tlnM00QKQggIkcsPYwwbC/JkJy276XnpuDhtrfIfORDFY89fgG4KKDKHxHJPd5hWbuX7IweiDbVgjxfYPTcJ8ZInT8Xw+AsxJOeN3FQjAL78gyEcORDFg/uiNUmzKA6t0eY7TdNkfOrOrfjOmSsAVg6kA8Cn7tzq+KKiAKAoEo4ciOLrPz6PrClQPNsrIDPUtO1dqPd/9fSLmEplF38/Bwsz8wb8qtTwsY8QUh+vXJ7BM2eu4Mr1ORhcQJUYbt4UxB8eiGL/zm5b+3DzPqlWcajSvqBbfUcn676afa32mTZVxpxuQQCwhIAEsXiPIjFgQ7uKI9952XN9ba8ee7o/IaQYjXAQz7tnRxcePTSA3b0hpLMmJlNZpLMmdveG8OihgaZvvL1ffpF/AqC6b6RPD0/h6PFBnBtLoN2noDvkQ7tPwbmxJI4eH8Tp4Slb2xRj+UVm8k8LVpCW3e28f1yqZ6f8D+6L4pEP7UQkoIJzAcMS4FwgElDxyId21mzwrFlVfo4T4r4nT8Xw2PMXEE8bkCQGTWaQJIZ42sBjz1/Ak6didcpJ6Ta/Vr76iT349N5ti0+kL1Akhk/v3YavfmJPzdLu74sg3KZi+bAEAxBuU9HfF6lZ2gDwrV9cQsYo/aZBxuD41i+cX1CVENJcXrk8g2/85CIuXUuhTVOwsV1Dm6bg4kSuz/OD10aRMSxb+/JOf3z9cajSvqDbfUcn676afZX7zB03bsCn925Dx7J7lHafjHCbimTG9Fxf26vH3u1zjBAvYmL5OzNNLJFIIBKJIB6PIxymV00bDecCQ6MJTKd1dAY09PeFW+ppJ6+Un3OB+586g3NjCWwO+5A1BEzOoUgSfCrDRELH7t4Qnn5g75r5K9xXT9hftLq6EALjiSx29QQBMJwfX22bEACB8+NJbA75kDUL8qQwTCR1W/vZ3RvCU/ffhQeefnHVPBWWzyvHxSl2jklh+U2T48TZMVydTWNLRwAH9/TSE+gVqrTOK+Xl2OflvJHVmSbHnY/+HeJpA5rCILGl654LDt3Mfan20tH3O94mFMWhMm3+eq4Zu3TdwhOnLuHt6Tnc2NmOh/Ztr8kT6AsKy90d1JDIWDAsDlWWEPbLmEwZNS13JmNi15/+zZrbnf/TD8Lvp5ddCSnH67GvFvmbSGQwlzXBhcAj3xvEpWspdAU1sIKvBAUEplI6tm8K4rFPDiCgKegIqAhoa7cn9e6POx2HKu0L1rrvWAkn676afZX7TOE9Sm+kDc+9PIILE0nX66tU/r147L10jhFSD3ZjH/VwScOQJIaBrbV9wsrLvFL+odEEYpMpbAhokJiENg0AlgYNOgIqYpMpDI0m1sxv4b7YspVfGGPoCKg4P54EA1t1mwvjSQiIXJ6k0nmys5/YZAonzo6tmafC8nnluDjFzjEpLL+iSDh0xxaXctscKq1zQrzgxNkxJOcNKHLxADoASEyCInMk5w2cODvmeBtRFIfKtPn1uGY0TcafvP+Wmu1/ucJyy7KMDe3FA/YdAdS03F/50Tnb2331EwOOp08IaXzDE3O4cn0OYb9aNIAOAAwMIb+KK9fnMDwxh1t7ghiPW9AUCZE2FUGfsqKftKDe/XGn41ClfUEv9R2drPtq9lXuM4X3KIMjcbw5NeeJ+lrOq8feS+cYIV5CjwsSQioyndZhWAKaXLr58MkSDC4wndad2ZcloFt81W10i8Mw178fgwtcnU07Vr5G5OTxJfZQnZNGdHU2nZsDvczDRxLLvc5+dTbteNqtes24Xe63pucc3Y4Q0nriGT03B7pcOnhoMoMhBOKZpXZMNzmuJbMYmZlHfH7l4pNucLo9rnR/bseDRuPl+vLqsfdynRHiJhpEJ4RUpDOgQZUZdKv0nKhZi0OVGDoDmjP7khm0/EB5uW00WYKqrH8/qsSwpSPgWPkakZPHl9hDdU4a0ZaOACTkFhQuhYvczLBbOgKOp92q14zb5b6ps93R7QghrSfi16BKDIZVOnjoloDKGCL+le2YYXFcT2VxeTqNmTkdVrkAVAdOt8eV7s/teNBovFxfXj32Xq4zQtxEg+iElMC5wOBIHCcvXsPgSBy8xp00O+nVO0/l9PeFEe0OYia98kkQIQRm0wai3UH09609h6Kdfe3qCWFnT2jVbXb2hLBrjW0K98M5x7xuIZkxMK9b4Jwv5vvgnl7HylcLTp0H5fbj5PEl9lCdO0s3OabndGRNe4uSkeoc3NOLUJsK0xKwuAUuBCwu8v+1YFoCoTYVB/f0Op524TVjWRZm5nRMJjK5QRXLatprprDcq8WxWpX7ix/Z7eh2pDJe6Qe6oZXL3mx2bG7Hto3tSGQMiGXLbwoIJDMGtm1sx47N5b+Ms7jATFrHlek0rqeyMMsM8gG1O3fs9t1294RKpr88X7t7QhX1BZu172iaHMdfvopv/uwNHH/5Kkyz/LGtxHqPVy1Veizrdeyb9RwjZL1oTnRCljk9PIVjJ2OITaZgWLnXDaPdQRzeH63JCu920qt3nlYjSQyH90dx9PggxhNZdARU+GQJWSt3Ax/0yTi8P2prgRE7+/rDAzsAYI1toja2ye3n4WdfxcXJFAr7AowBne0aDu+PQlEkx8rnNKfOg7X249XyNysnrykCcCEwm9YxmwZUWUK7T0G7T4ZPqd2Cj61IUSQcORDF1358HroFAMU3uhIDjhyI1mSh4YVr5sgzL+PceKpoGIYhNxdtM14zC+VeK47Vqtx+v4J7d23CT89fK7vNvbs20aKiNeClfmC9tXLZm5HEGO7buw3f+MlFTKV0hPwqNJlBt3ID6AFNxn17t0EqM/d5IS4E4vMGEhkT7T4ZHW0atIKYU8tzx07fbd8tXXjg6RdXpL/vli6cemOq5O+vTKdt9QWbse/45KkYHn8hhuS8kZsuDsCXfzCEIweieHBfdF37Xs/xqnVbU+mxrNexb8ZzjBAnMOGFScXqxOsroRP3nR6ewtHjg0hlTWwIaIvTf8zkA8WjhwYcDaJ20gNQ1zxVkvfFjikXUKXqOxp29uXENqeHp/Dws69iek6HEAJC5AYeGGPobNfwn3//XRWlV09OnZt29+O18reCWtW5l2NfLfKWMSyMzs6v+L0iSQj4ZLRrCvyqVHZxMmLf6eEpHHnmZcymjZID2Y/fd0fN2osnT8Xw9R+fR6kZAWQG/LsP71r3TbcXVRLHauWz3z5TciD93l2b8K3P7K1p2q2o3n1TL2nWsns5LgPO5++/nooh5Ffx7hs6oOTnV37l8gyeOXMFV67PwRC5KVy2bWzHfXu34fYbNlSdVrtPQaRNxctvz9Tl3CnXd9t3Sxe+86vLK9KfTGYwl7UQ0GRsDvtX5OvTv3XD0gC7jb5gs/TXnzwVw2PPX4DFRX7B8ty0cKYlIEsMj3xopyMxvdLjVc+2ptJjWa9j3yznGCFrsRv7aBCdkDzOBe5/6gzOjSXQE/YXDbAIITCeyGJ3bwhPP7DXkW9c7aS3qycEQOD8eLIueaqmDEOjCUyndXQGNPT3havOh519rWebwvreHPYhawiYnEORJPhUhomEvqIunSzfejh1bla6H6+Uv5XUos69HPvqOYheSGIMAU1GwKcgoMp0XlehqE0N+RDPmDAsDlWWEPErmEiubFOdYpocdz76d4inDWgKA8AWB5MBAd0UiARUvHT0/TV5Et4t1cSxWslkTHzlR+fw1vQcbupsxxc/spueQK+BevdNvaSZy+7luAw4m7+ZOR2/9bWfQjc5Ots1fGSgBx8d6MXmsB9cCAxPzCGe0RHxa9ixud3WE+hr4ULg6HODiF1LoTfSVpd7usK+2+6eEB54+sUV566AwJvX5pDWc4PoN3e1L/2tIF9P3X8Xzo0nbfcFG72/vjymS2wpbnPBHY/pdo8XUP+2ptJjWa9j3+jnGCF22I191NslJG9oNIHYZAobAtqKJxQZY+gIqIhNpjA0msDA1khd0rswnoSAqFueKiVJzLF07exrPdsU1rfEJLRpALA0vUOpunSyfOvh1LlZ6X68Uv5WQnVeH1wIpLImUlkTjDG0qTICPhkBVV58So6srqhNlSRsWLawVC3j04mzY0jOG/mn1fLHa7FJY1BkjuS8gRNnx3Doji2Opu2mauJYrfj9Cr76iYGapkHq3zf1klYuezP53ssj0PPzWk/P6fjvv7yMZ351GXtv7sTv3daHu27qhCwFHU1zeGIOb03NIehTYVgCsgTI+QG/Wpw7y/tugyPxkuduRufQLQ4lv1hjxuBo0+QV+To3nqwoX43edywZ0/MkJjke0+0eL6D+bU2lx7Jex77RzzFCnESD6ITkTad1GJaAVmYAxSdLiHOB6bRet/R0iwMCdctTM6v38XWSU3lv5DogpFaEEEjrJtK6CQDwqTKCWm4edRpQL8/N9uTqbBocgFLmISiJAVZ+u2ZCbXjraeVj3splbyZ33dSJf/quPvxocAxGfv4tLoBfXprGLy9Nozvkw8f29OIjA73obNfW2Js98YwOgwuEZQYhRH4BbAZZyk0TUutzp9y5a3IOIQBZAiye+7nwi9BWPafdjunU1hBCKkF3h4TkdQY0qPknA0rJWhyqxNAZcKaDZyc9TZagKvXLUzOr9/F1klN5b+Q6IKResoaF63NZXJ5OYyw+j2TGAOctM/OdbW62J1s6ApCQG4gphYvcg+lbOgKOp+0masNbTysf81YuezO5bVsH/r///Hac+KP34N/s246+Dn/R3yeTWfxv//AWPvVff4kvn3gdL1+ewXpnm434NagSWxy0B5AfTOcwLIG0YUFhqNm5U+7cVSQJLD/XN2O5nwu16jntdkyntoYQUgl6Er3FeHE+K6/kqb8vjGh3EOfGkugJSyvmQ5tNG9jdG0J/nzNzFxamtznMVsxtOps2CuZET9UlT7VQ73nTyyms7+4gMDVnQM9/UdHVrta0LtdbB3bOFTt5d2o/hLSKed3CvG5hiulo98kI+dTFV69bXVF7EmIr5kSvZXtycE8vvvyDIcTTBiTGsXxOdNPKzZ96cE+v42kXMk2OE2fHcHU2jS0dARzc01vTOdgL67wrwDGRXIpjm0MqZtNW3drwepe9VdW7b+olrVz2ZrShXcM/v2sbfv/Orfj12zP4wdkx/MPw1OLAqcUFTl68hpMXr2FLRxvu3r4R/X0h9EUCi3OlW5bAzy5MYiKRweawH+/b2Q1ZXtmf3rG5Hds2tuPStRQ2BjXohoAlOGQmQVMZZtM6opuC6I34YXGxONWLU8qdu35NgiZLi3Oi+9WlNtPOOV2Pdreae5b13ucsj+nL50SvdUxfT1vj9DjGamt7eWG8hBBCg+gtpWhlZUtAld1fWdlLeZIkhsP7ozh6fBDjiSw6Aip8soSsxTGbX5n78P6oYwFrIb2Hn30VFydSEEIsDgIwxrCxXcMfHsitQl6vPDnNyeO73n0t1Pe/+cuX8Pp4tuhvk8lszerSiTqwc67YybtT+yGk1QghkMqYSGVMKJKEoF9B0KdAa+FBw4X25MgzL+P1sSQKHyC7itz83LVqTxRFwpEDUXz9x+eRNQWA4sfXZAYcORCt6aDuk6diePyFGJLzBjhyr3Z++QdDOHIgigf3RWuS5kKd/6unX8RUaimOzcHCzLwBvyrVpQ13o+ytqt59Uy9p5bI3M4kx3HVTJ+66qRNTqSx+PDiOH5wdw7WCNu3q7Dy+9/IIvvcy4Fck3LixHbdsCuDk8HXMZczFduebPx/Gp/fegN+/a9uKNO7buw2P/ugc3pqagxAo6O8CHW0q/sXebUhkDCSzJoI+BR0BFapDU7itdu4qcm5aGVmSkDG57XO6Hu1uNfcsTtznLMT0x56/AN0UUGQOKf/EvmnlvuSoZUyvtq1xehyj3P723dKFU29MeWK8hBBC07m0jNPDUzh6fBDnxhJo9ynoDvnQ7lNwbiyJo8cHcXp4ivIE4J4dXXj00AB294aQzpqYTGWRzprY3RvCo4cGahyoWP6b74UV3L2Qp+o5eXyd2tcPz44ilbVK/i2VtfDDs6O282RH7c7x0ueKe/shpHWYnGM2rWNkJo2rs/OIzxuwWnS6l6HROOLzxoq2QwCIzxsYGo3XLO3+vgjCbSqWDzUwAOE2Ff19tVsA68lTMTz2/IXcU3MSgyYzSBJDPG3gsecv4MlTsZql/a1fXELGKP3Kecbg+NYvLtUsbcDdsreqRu0HOqGVy94KuoI+/Mt/ciOeefC38B8/3p9/A7dYxuS4MJHED34zgWTGBGOAKgOSBCQzJp78+0t49sUra6ZVuF5kYcwSQiCZMXBlOo3JRAZZs/R9QqXKnbt7tnbgkQ/txG3bIrbP6Xq0u9Xcszh5n/Pgvige+dBORAIqOBcwLAHOc0+gP/KhnTX/grbStsbpe7xy+zs7MovHnr+A167Mema8hJBWR0+itwDOBY6djCGVNdET9i+9UibJ6AlLGE9kcexkDHdv31i3pzm8mKcF9+zowt3bN9b8lamFOrC4wK3dQWTNgqk1FIaJpL5YB/XKk1OcPL5O7UvXLXz3pZHFnwu3XOhMf/elEfyHj/VDc2C6hlrUgZ1zZbV9ObUfQkhO1rCQNSxMz+kIaDKCPgUBTS56FbhZmSbH4y/EIASgyQBj0uKTfkJwGBbw+AsxPHDPzTV53fzYyRhkiWF3TxCJjLU4lUzYL2MyZdSsLVsot8UFNIUtvnYuMUBiHLopalbuTMbET89fW3Wbn56/hkzGhN/vfBffzbK3ukbrBzqplcveKmSJ4e7tG3H8lVGE/QpkiSExb8IqMTe6JQDBc59RZQHDAr5z5jI+ecfWxalduBB45swVcAHctLEdulkwnYvCcH1OxzNnruC2bR2QCuJ1KmsilTXRpsnoaNPWPX3baufuZ9+z3dY5XY92t5p7llrcyz+4L4oH7rnZtanC7LY1Tpe93P58kpRfFDf3z6fkpprxwngJIa2MergtYGg0gdhkChsC2oobe8YYOgIqYpMpDI0mWjpPhSSJYWBrBPtv3YSBrZGaBKbCOpAkCW2ajJA/N9+uJEkr6qAeeXKKk8fXqX09ceoSzPzToosPX+f/LezW5AJPnHLmKb5a1YGdc6XW+yGEFBNCYC5rYiKRweXpNKZSWWQMZ55m86oTZ8eQnDfyr6bLkFjuFfXcf2UoMkNy3sCJs2OOp13YlsmyjA3tGrrDfmxoz/1cy7assNyF87YCgMSkmpb7Kz865+h2lXKz7KSx+oFOa+Wyt4rhiTlcuT6HDQENm4I+bO8KoDfsg1ZiznMuAMMSMK3cYHIqY+JnFyZX7CvsVyExBr8qoV1T4FclSIwh5Fdx5fochifmSuZlXrcwFp/HyEwaqay5roVOy527ds/perS71dyz1OpeXlEkHLpjC/7ofbfg0B1b6v6FrJ3j4nTZy+0vo3Po+SmAdIsXvYXmhfESQloVDaK3gOm0DsMS0MrM8+aTJRhcYDqtt3Se6q2Z68DJsjm1r7enS3eUq91uLV6sg2Y+5wjxCosLJOYNjM7O48p0GjNzOnSz9PQbjezqbDo3L2uZsSyJ5d7yuTqbdjxtN9syN8v9ls34ZHe7SrlZdkJIc4tndBg8N98zkBskDPlVhFZ5q0YgN6AuAPz1q1fx5tRcyX0tp8kMhhCIZ1aPEbrJMZnI4Mr0POJpA9yFqdvq0e5WE1Nb+Z7C6bKX25/JOYTIH2OR+3k96RBCnEGD6C2gM6BBzX+DWUrW4lAlhs6A1tJ5qrdmrgMny+bUvm7sbF874xVstxYv1kEzn3OEeJFhcczk508fmUljNq3DKHP9NZotHQFIyA1glMJF7mWfLR0Bx9N2sy1zs9w32YxPdrerlJtlJ4Q0t4hfgyoxGFZxA6NIxcMVMsOKtTAA4PWxJD779Ev4f/wfr+LieAoKw4p9LdAtAZUxRPz2YoTJOa7PZXF5Oo3pOR1mHeN4PdrdamJqK99TOF32cvtTJAksv8AqYyuvhWauY0K8jAbRW0B/XxjR7iBm0saK19GEEJhNG4h2B9HfF27pPNVbM9eBk2Vzal8P7dsOJf8Yx/K3Mhd+ViSGh/ZtXzNPdnixDpr5nCPE63STY3pOx5XppQH1Rn5C/eCeXoTaVJiWABfF5eCCw7QEQm0qDu7pdTxtN9syN8v9xY/sdnS7SrlZdkJIc9uxuR3bNrYjkTEgCpb+DLUpRYPmssygKRJUmZV8Onvwahzf+oc3MTNvYrzEQqECuYVEt21sx47NlX3hyIXAbFrHlZl5XEtm6xLD69HuVhNTW/mewumyl9ufX5Ogybl50TVZgl9dGrpr9jomxMtoEL0FSBLD4f1RBH0yxhNZzBsWOBeYNyyMJ7II+mQc3h+t6/yCXsxTvdWiDjIZE194bhCf/m+/xBeeG0QmY1adP9PkOP7yVXzzZ2/g+MtXYZboKHIuMDgSx8mL1zA4El98zbGwbAtzCl6ensPITBpj8fmSZbO3rwxm0joS8wZm0jrG4hnb9aRpMj5159bFn4VY+rfgU3duLVpUtFyeKq2D9R5fp/ZVaV3aKT8hpHILA+ojM2lcyT/ZtvxGvxJuXKuKIuHIgShkiUE3BQzLgmlxGJYF3RSQJYYjB6I1mc+0sC27mn/K//L13H+vzqRr2ocoLHfWFNBNa/Fftsbl9vsV3Ltr06rb3LtrU00WFQXcLXshO/2TZtSq5SaNbSE+/eOl67g4ngIvM7+4xBju27sNAU3GVEpHxuTgQkA3BfzqUltuWQKWxcG5ABe5wYx9t3Qhuql4QNzkAlmT4+3peVyeTiORMTBvWJhK5RYCv2/vtqJFRYvyLAQujqfw4lvTJfMsRG4gfmQmjYlEpqo1UFaL24V/OzeexB/u3151rC2XTuHvh0YT+IN92/P3GRnMpnXE53XMpnWMJ0rfa633/szJ9qzebeN678uWHxMAJfeXMXh+3RkGWZJy14QD4yV0f0fI+jBRxUoZly9fxubNm+Hz+Yp+zznHyMgIbrjhBscy6KREIoFIJIJ4PI5wuPW+sTs9PIVjJ2OITaZy88RJDNHuIA7vj+KeHV2UJ5c4VQef/fYZ/PT8tRW/v3fXJnzrM3srytOTp2J4/IUYkvNGbh4+AKE2FUcORPHgvujKfFu5eQeX59tunuzsy06e7HAyTxVvs85z3Kl9OXV8SWNwMvY5Hf9rEZczhoXR2XlH9lVvqiwhoMlo9ynwq/LaH4D71+oXnjuL7740srhwM5B7q+dTd27FVz+xp6ZpOxn3Gintd3/lb3F9zljx+43tKn79xd+tadqAu2V3qi/QaFq13M3Ky3HZyfwVxqeMwaFIwLaN7bhv7zbcfsOGkp955fIMnjlzBVeuz8EQuWlXtm1shyYDZ96cQeEMLTIDPvLOHhzY1Y3v/Ooy3ryWwpxuQS8zjYvEgM1hPz77npvwvl2b104/39deK88A4FNlRNpUBH1rf4m5WtwGUPJvmsxw8uJURbG2XDr7bunCqTemVvz+hg1t+OFvxpGcNyCQmyZmrXammrbJyfbMzbaxmvsy28e+YH9Fx8vJe0m6vyOkiN3YV9UguiRJ2L17N77//e8jGl1qnCYmJtDX1wfLqv5pqlpq9UF0IPfN49BoAtNpHZ0BDf19Ydef9vZinuptvXVQ7oZ2QSU3tk+eiuGx5y/A4iK/EnxuLjbTyj3t8MiHdqK/L4KjxweRyprYENCgyRJ0i2MmbSDok/HooQH88OwovnPmStl0Pr13G776iT04PTy15r4ALG7Tpspg+QVW5g0LQZ+CRw8N2Ar8C2kl5w0IllsAUJZYrpPoVxf3U2meym2zkCcnz/H17quwbOXqspKyEe9zMvY5Hf9pEL08RZLQ7lt9QN1OW1XLa3WxTc0YUCQJXAhIjMHkvKhNrYUvPHfWVoyphcI4Wdj8coHFOFmrm3cn43013Cy7nf5JMw4ot2q5m5mX47JT+VsenxiArMmRyBgIaDI+94Fbyw5KcyEwPDGHeEZHxK8hmdXxX/7uDaSzFiQJiwO8XCwtuMkFEParUGWGjJGbw9ywRNGg8wKJAXdv34iDt/Xizhs7Ied38srlGXzjJxeR1q3FfRmWsJXnBYokIdymIORXF/e7Wr0Uxu2FdSUtLor+NpnMYC5rIaBJaFMVW7G2XDpL+5KxOexf8fs2VUJHQIPEGLgQSOsWQv7S91p27imWf8bJ9swLbWMl92V2+mx3b99Ycn9O3Eu63WckxOvsxr6q3/fcvXs39u7di2effRb33nvv4u+rGJMndSRJDANbI25no4gX81Rv66mDTMZc9YYaAH56/hoyGXPNV7xNk+PxF2KwuICmMEgs15uTGCAxDt0UePznMfT3hZHKmugJ+8Hyr0L6JRk9YQnjiSy++bOLOPPW7OJ+C9+WXGgivvvSCL74kXfg2MnYqvv6ixeGAbAV2wBARAiMJ7I4djKGu7dvXLUzwblYTKu3o61oP6JgP3tv6rSRpxgAseo2hXly8hxfz74K66BcXVZaNtJ6KP7Xh8k54vMc8XkDqiyh3acg6FOg5V/ZLnc91+taLWpTI+Xb1Fqkr+sWvvvSyOLP5WLMf/hYf9EUXU4oFyeB3Py0uinw+AsxPHDPzY5Pa+JkvK+Gm2W31T+pUdpuatVyk8p4LS6Xik+mxeFTJHQFNUyldDxz5gpu29ZRckoViTHc2hPM7UsIPPK9S0jrFrpCGljBDOkcAm9NzQEAbtrYvrivgCajTWvDtWQW3WE/tnS04e/fWHqKmwvgdOw6Tseuoyfsx8f29OKD/ZvxzJkruXSCS+n4FGYrzwtMnpuuLTcwqSDcpsCnyGXrBcjF7c1hhosTKQDArd1BSPlFJH1Sbk5siwtYHNgU8i1+rlysLZdO8b4EfIoExljR77kAIm3q4mcibZWlAZS/P3OyPfNK22j3vqySPlup/a33XtLtPiMhzaSqFoUxhr/4i7/Av//3/x4f/ehH8ed//udFfyOE1M9XfnTOse1OnB1Dct7If5tf3DxITIIiMyQyBoZGE7mnSpZd74wxdARUnL2aWOyoLm8SFn42ucBXfnQOscnUqvs6P57EhfHkqtvEJlMYGk2sWrah0cSaacUmUzhxdmzN7S6MJ3HegTzVm506aNSykfqg+O8Ow+KYTefmUL86O4/4vIGzI3FbbVqtrlW7bWot0n/i1CVbMeaJU5ccT9tOnEzOGzhxdszxtJ2M99Vws+xupu2mVi03sc+LcblUfFBkCaoi5Z/UVnHl+hyGJ+bW3NfwxByuXJ9D2K8WDaADgG6IxfWNdLP4CwMGhnCbhtk5HZ+68wZ89w/uxoO/czN6I/6i7cYTGfy3X7yJf/7kr/Cbq3Focv5R92X7Cvnt5xlYmjf96sw8xuLzmMuaq8bNrCEgRK482YKyZHQO3crNja1bHBljab7vcrG2XDrl9uVkGqt9xsn2rNHaRjf7TF5In5BmUtUg+sK32g8//DCOHz+OL33pS/jX//pfI5vNOpo5Qsja3pq215mzs93V2XRuPrkyfW4p/5qebvFcJ7MEnyzBKDMXYak8GfkVx1fb15rpcYHptL5qWtNpfe20uMDV2fSa2+kWh2Guva+18lRvduqgUctG6oPiv/uyhoXrqSwuTCSRMThkxko+bVjra9Vum1qL9N+2GffsblcJW3Eyv53TnIz31XCz7G6m7aZWLTexz4txuVx8kBiDIksIago4AAti8e2qcuIZPTcPtLzyIrAEX3z7yBIrF5PUZAZDCMQzOjYENPyLvTfgLz+7F499cgC/Hd1YdF1Z+YVIJ5JZvDWdxkxah1UwFUzhvio1r1uYSGRwYSKJrMmhlrigTb5UFpPzFb9fuAcr/BtQOtaWq/9y+3IyjdU+42R71mhto5t9Ji+kT0gzWfe7LR/+8Idx+vRpvPDCC/jYxz7mRJ4IIRW4qbN97Y1sbrelIwAJudccS+Ei95TfwhxqpWQtXrKjWy5Pav6ph9X2tWZ6EkNnQFs1rc6AtnZaEsOWjsCa22myBFVZe19r5ane7NRBo5aN1B/Ff3dF/CoUKTf3qG5xGBaHxcXigEqtr1W7bWot0r/RZtyzu10lbMXJ/HZOczLeV8PNsruZtptatdykOl6Jy3b7mzdsCGDrhgC2dQbQ2a7BV2L9j4hfgyqxkg/oyExafPtIZiuHNXQrtzBpxL8UhyTGcNdNnfjKx9+Jv3rwbtz/T25EV7A4ThmWwLWUjktTcxhPZDBvWLnB72X7qlRQUyAzYE63YFq86AtwRVoqiyJJK36/cA9W+DegdKwtV//l9uVkGqt9xsn2rNHaRjf7TF5In5BmUtUg+v79+6FpSxfYO97xDpw5cwYbNmygOVFrhHOBwZE4Tl68hsGROHi5iEEc0Uj1/cWP7HZsu4N7ehFqU/Pz4lkweW5gxuQ897MlEPar6O8LYyZtrLjehRCYTRvYsyUMRVqYrw/Ltsn9V5EYvviR3Yh2B1fd166eEHb2hFbdJtodRH9fbvGHcseuvy+8mBbnHDNpHZPJDGbSOjjni/s5uKd3zTzt7AlhVz5PnHPM6xaSGQPzulW0r4U8eUVhHdgqm1hWNuF+2Rrp2izUqPlezuvxfzKZwWyLPEWzY3M7tm1sRyKTu545FzCt3CvZumlhek7H9k3tNbtW7bQntWorHtq3vTjGiGX/RS7GPLRvu+NpF8ZJLji4WJhHNvezaQmE2lQc3NPreNpOxvtquFn25WkX9k9qnXaherfldvpl9Si325olhtaCF+NypfFBlXOLWW7paMO2zgA2BDS8OTWHF9+aBofAts58rFs2z4qmMjCWG/hVZSBjcMzpJjJGrn1KZgxs29iOHZtXfrHIhcDMnIF39IXx5YPvxJcPvgPhZWtJCACJjIkrM/MYnZ2HX1PQt8FXUV1wIXBxPLWiLCbPxeuFwXSfysBYrjw+ZelhJL8mQZNzc5ZrsgS/ujR8Uy7Wlqv/5fuaN0xMJjPImBZUmTmSxmqfWd6OF9dTZe24rX35VdzUFXCk3SjXBtltm2rVZ1ot/cK/cSGwfZM7fTZCmk1Vqw79/Oc/X/G7zs5OnDx5suh3X//61/HQQw+ho6OjqsyRnNPDUzh2MobYZAqGlXudLdodxOH9UVpBuQYarb79fgX37tq06mJj9+7aZGuRMUWRcORAFF/70XnoFrB8UkAJwJH3RtHfF8HR44MYT2TREVDhkyVkrdwAa9An44/edyt+eHYU3zlzBcDKgXQA+NSdW+H3Kzi8P7rqvv7wwA4AWHWbw/ujkCS25rE7vD+KI8+8jNfHkkUluwqgI6Di8P4oFEWykafcSu8PP/sqLk6misrHGNDZri3myUskiVVWtonU4vyMuZsUho0ulq3Rrs0FjZrvUrwe/5944RL+t394Ezd3tWPPlggGtkYwsCWCTaHKbnobgcQY7tu7Dd/4yUVMpXSE/Co0mUE3cwMHAU3GJ27fiutzOkJ+Bf4ST/itK30b7Umt2gpNk/GpO7cuxZj87wvb9U/dudXxRUWBpTj59R+fz89bWxzgZAYcORCtyUJmTsb7arhZ9sX+yWLaxaQapr3AjbbcVr+sxuV2WzPF0FrwYlxeT3x48c3pxeOtm7l5uiNtKiSG4lhn5WJdR5sK3RJ4ezq9oj8eaVNx395tKxYCfeXyDJ45cwVXrs/lpoqRGLZtbMd9e2/A8VdGEJ83oVu86ClnSwCXp9P41P/6K7x/dzcO3taHHd3BVeuhVDodgZVlmdMFUhkTnQEVYAwTSb2ozhSZQZYYZElCxuRr1uVq9a/IuYH6Od3CXK5RWfocgyNplPvMQnv22PMXoJsCiswh5Z+ANy0BWWK227O19iUxYEO7iiPfeXnd7Ua5NmjfLV049caUrbapFn2m1dpGACv+tjGoQZZQ9z4bIc2mpj2uRx99FNPT07VMoumdHp7C0eODODeWQLtPQXfIh3afgnNjSRw9PojTw1NuZ7GpNGp9f+sze3Hvrk0l/3bvrk341mf2VrbDcvEz//t7dnTh0UMD2N0bQjprYjKVRTprYndvCI8eGsA9O7rw1U/swaf3blt8WnCBIjF8eu82fPUTe2zvy842do7d0Ggc8Xlj+XpBEADi8waGRuO287R8D0KsHFDwosrLxvIL0OSf+qx7jnMa9dps1Hyvl1vx/8xb1wEAb07N4a9fG8V//OE5fOq//hKf/m+/wmPPn8ePBscwMpP2xFPzTrj9hg343AduxfZNQWR0E9fTOjK6ie2bgvjcB27Fu27oQDJjYHR2Hlem05hN6zDLvMpbjcrbE+fc1NW+aqi6qas2U5oAQH9fBOE2dUX6DEC4TUV/X6RmaX/2PduLnhIs5FclfPY9zj99X8jNsgMoH4RqfEm73pav0S9rVq7XexOpd1yuJj4sP96bw36E/CquzxmQJYaeiB8ZwyqKdf/s3duKppFcK7y/cnkG3/jJRVy6lkKbpmBju4Y2TcGlaymcODuKQ7dvRf+WCDYGVLT75BXzl88bFk6cHcO/+ctf48gzL+P534wjY1i207mWyr0ttymoFcXtmze14//1oV340kffgZ2bg0V1tmdrBx750E7cti1iuy7L1X9nu1a+jgSwMaiuO43VPvPgvige+dBORAIqOBcwrNybdJGAikc+tBMP7ouufgBt7KvdJyPcpiKZMdfdbpRrg86OzOKx5y/gtSuzttNwss+0Wtv48LOv4uFnX13xt7F4bp2E3oiv7n02QpoJEzW8kwyFQnjttdewfXttO/R2JRIJRCIRxONxhMPef1WFc4H7nzqDc2MJ9IT9RSspCyEwnshid28ITz+wl741dEAz1HcmY+IrPzqHt6bncFNnO774kd0VPZFmmhx3Pvp3iKcNaDIDBxafQpaQm1swElDx0tH3Q1EkcC4wNJrAdFpHZ0BDf194Rd3ouoUnTl3C29NzuLGzHQ/t217y6UA7+yq3jZ1jt3NzEL8ZjSMxb0KVAcakxbIJwWFYKCqb3fQ2h33IGgIm51AkCT6VYSKhe/5csVW2kA9Zs6BsSu7pmHqXrVGvTa/k243YZzf+O5k33eR4z2M/w2Ry7cXUNgRU7NnagYEtEezZGsHNXe2QPXTuVIoLgeGJOcQzOiJ+DTs2t6948q5QmyYj6FPQrimOnHt22m8nFcYqVc49ecbzi6JJDCXbc6cUXtfdIQ2JeQuGxaHKEsJtMiaTRs2u68K0u9oVTCSMxYW3N4dVTM1ZNW1Tisoe1JDIFJTdL2MyVbuyLz/mAmzpLSmIuh3zerflRf0yhYGLgn4ZA3RT1KzcbvNKDK0FL8dlwNn82Y0Pdo73rp4g/ucP7sLUXBZtiowtkTZ87n+8hkvXUtgY1KAbApbgkJkETWW4ntKxfVMQj31yABJj4ELgke8N4tK1FLqCGljBt1ACAlP57b9+aACxa0sxVVUYfjg4hr8dmkAqa67Ie9Cn4Hf7N+Pgnl7cuLHdXjpd7fjs72xHMmOsiNtcCIxMz8PgAj1hf1EfvdJYW/iZiE/B/d8+s/q9UJuKpx64C4mMWVUadj9jmhwnzo7h6mwaWzoCOLint+o2rHBfvZE2PPfyCC5MJNfdbpQ7JwUE3rw2h7RuIaDJuLmrfelvNtJYb59ptWuFC46LEykAwK3dQUhS8dQ8hdfR7LxRlz4bIY3CbuyrzfuexBFDownEJlPYENCKGkcgN61CR0BFbDKFodEEBrbW+MmfFtAM9e33K/jqJwaq/vyJs2NIzhtQZAZJkla8qqKAIzlv4MTZMRy6Ywskia1ZF5om40/ef8uaadvZV7lt7By7obEEkvNm/pXIfMkWNmUyxLKy2U1PYhLaNABY+mKgEc4VW2WTvFG2Rr02GzXfjUpTJPzq6L04N5bAT89N4uzVOAZH4hhPZFZsO5M2cPLiNZy8mJsWo90n4519kcVB9Z09Iahy4wxISYzh1p7VXysvNK9bmNctTDEd7ZqMdp+CgCavOE9tp2+j/XZSYaySJQnLv5Yt1Z47pfC6liUZG9qLU+8IoGbXdWHaqiJja6e6LG2ppm1KUdnl+pZ9+TFfrl7HvN5teVG/jElYPs6hyLUrt9sohjYHu/HBzvG+dG0OEmO4d9dmAMDgSByjM+lcm8Qk+FWBwhftQ34VV67PYXhiDrf2BDE8MYcr1+cQ9qtFA9sAwMAWt49dm1sRU//ovTvw4HtuxgsXr+HEa6N4fSy5+LdU1sRzL1/Fcy9fxW1bI7jzxk5cnkqtns50GhJyi5yuqDPGcMPG3IKYflVGxrQQyH/pXem5XviZ4y9fRSqzxr1QxsBbU+mK2pNq8qUokmNtVuG+BkfieHNqzpF2o9w5mdFz89kr+YU6MwZHW/4BMTtprLfPtNq1kjUW3o5myJoifx9XXP6F62j/raXfYieErI4G0T1sOq3DyC/wUYpPlhDnAtMtsoharVF9A1dn0+AAlDLjKBIDrPx2XmLn2BkmBwegOlC2Zj5XvFg2L+bJjkbNdyNjjGH7piD8qoyP5hemmkxkMHg1jrNX4zg7Esfb11de43NZC796cxq/ejP3qrumSHhHbyg/qN6Bd/SGF2+QmokQAqmsiVTWhCyxxSfU29TqB9Trwc1Y5eZ17Xab4mb6rXrMG7Vf5gS3z3dSX9Uc7+m0DpMDbaqce1I7v8h27o0NAU1mSAqBeCb3mXhGh8EFwnLpC2r59ivyoMr4YH8PPtjfg+HJFE68Noq/OzeJ+YLpXF4bieO1kTgYgAjPPXyyvExrpVMoY1gYj1tQZQmRgIqQT6k6PrdCe+Jku1FuXybnEAKQJcDiuZ8LHzhyMxYv5I2xlfmqR94IaQU0iO5hnQENav4bTr+08uY9a3GoEkNnQCvxaVIpqm9gS0cAEpZei1+Oi9wDC1s6AvXO2qpsHTtFgqRbjpStmc8VL5bNi3myo1Hz3Wy6w37cG/bj3t25J9fiaQO/Gc0NqJ+9GscbE8mixcOA3NQwr16J49UrcQCXITHgls0h7Mk/qf7OLRFE2tSViTUwi+cWNktlcgPqAU1Bu0/25IC6m7HKzeva7TbFzfRb9Zg3ar/MCW6f76S+qjneyz8jMQZJXpoSJa1bUCWGiD/3mYhfgyoxGJaAr8RIsm4JqGxp+9Xs6A7i4Q/cij/Yvx0/PTeJ7782iti1ucW/CwCz8wZm53MLfXe0qWjPv/FVSToLDItjKpnFzJyOsF9FyK9AqfCNuVZoT5xsN8rtS5EksPwipozlfq42jWqsVsaFvC38/3LUbhKyfjSI7mH9fWFEu4M4N5ZET1haMafXbDo392R/nzvzu9d7DlSnlMt3req7kerp4J5efPkHQ4inDUiMQ2JLwZcLDjM/J/rB/BOedjhZfjvHrjuEFXPUzqYN9PeGF+dEh7AAtjSfKoSAyWG7bIXpbQ6xFfOGu31troebZav3tVlrjZrvZhcJqPjtHV347fwCSmndxOujicXpX86NJ6GbxYtvcgFcGE/iwngS//9fjwAAbtoYwMDWCPZs6cCerRFsCvnqXpZasbhAMmMgmTEWB9SDPgV+VSo5oO7k3KZ2FMYqBmvFvK6mZb89r1Thdb0pKHA9ZS7OS74xqGA2bdbsui5MuyvAcTWhL6a9JaxhNm3VtE1xMz7Uon9il5ttuZvldhvF0NZSzfFe7TMMQDJjYndvGPtv7ULasLCrN4RtG9vLzlWezBjYvimI6KZ2XBxP2VpnJKAp+OieXtzaHcLgaBwvX57Fy2/PQC9YxDutW0jrFmSJIeJXYHGBHd0hcAi8+Na0rbVMFlhcYCatY3beQLuWW0DTr5Z/U66wb33zxgCCfgWJebPh2hO7/Qw759GunhC4EDh58dqq96bl9uXXJGiytDgneuFi3+ttm8qVs/A4drSp2L6pHefHUyvK6FPZ4s/LvyjySrvp1bERr+aLeE9NB9F/53d+B21tbbVMoqlJEsPh/VEcPT6I8UQWHQEVPllC1uKYTRsI+mQc3h915eI+PTyFYydjiE2mYFgCqswQ7Q7i8P6op1d2XivfTtd3o9WTokg4ciCKx56/AN0UUGQOKf9Nu2kJyBLDkQNR24MjTpbfzrE78szLODeWQuFDpWw29yrlkffuwNBoHI/+6DwMDgDFj54ywHbZFq7Nh599FRcnU0Wr3DMGdLZrrl2b6+VW2ep9bdaDl9vwWmuk+B/QFNx5UyfuzM9LqpscFyeSODsSx+DVOH5zNY453Vrxubeup/HW9TROvDYGAOgJ+7Fna25e9YGtEWzb0Oa5J7irUWpAPeRXFm/anzwVw+MvxJCcN8CRm432yz8YwpEDUTy4L1qTPC3Eqq/9+Dxyh6b4Sw+J2W/PK7VwXf+bv3wJ58aLF7GdTGVrel0vpH3/U2cwlVpqnLMGx/mMCVVmNW1T3Ix9TvdPKuFmW+5mud3WyjG0Frwel6s53nY/0+ZT0OZTsDHowx+9N4ov/fUQplIGQn4Fmpx7MjyZyT0xfteNG/Dvjg/iyvU5GFxAlRi2bWzHfXu34fYbNqzI9yuXZ/DMmStF2+/uDaFdU3DmrWmYBa+6WVxgOm0AAM6PJ/D5750FY4AmS6umUUrhdGx+VUZHQEVAKx7aKdW37mzXkMyYDdWeVNLPWOucUCQgPq/j8H//9Zr3pqvtKzevfG5u+YzJHWmbypXzo+/sweWZ+aLjuDGoQZZQsowb2zUIABNJ3XPtplfHRryaL+JNTAgh1t5sJc45hoeHMTk5Cc6Lb1727dvnSOac5sZK6E4ouqjzwdnNi/r08BSOHh9EKmtiQ0CDJkvQLY6ZfMP86KEBTzY2dvPtVH03aj0BxUE8tzQJEGpTKxoUcbL8dvY1NBrH1398HlaJFk1mwL/78C4AwNd+fH7F1A1AbtDl8x/eVVH5Hn72VUzP6RBCLD4FyViug/qff/9dnj2+a6l32ep9bdab2/l2OvY5Gf9rEZczhoXR2XlH9gXkbnrfnJrLT/8yi8GROGbyN8Gr2RBQFwfUB7ZEEN0UhNxEgz2KJOG5l6/g//ezYXCB/MKHxTfjj3xoZ80G0k8PT+HIMy9jNm0Uf3GK3Benj993R82ury88dxbfOXOl7N8/vXcbvvqJPTVJ+9Djv8ArV+Jl/377tgiOH3lPTdIG3I99TvRPquVmW+5mud3mdgytBS/H5VrkrxLVHO9KP3N6eAp/8cIwhidT0C0BhQHbNrbjrhs34MTZUaR1C2G/ClXOTf2SyA+wf+4DtxYNcr9yeQbf+MnFstt/bKAXP794DW9fTyO77A23BYrEEPQpEBAI+pQVaVRCUyRE2lQEfQr+MXa9bN/a4rmFMTO65fn25MlTMTz2/AVYXFTUzyh1TmwMaphMZmFxUdG9abnza98tXTj1xpQjbdNq5RQAAqqELRsCRXmWJaA75MP1lL4ifQCeaze9Ojbi1XyR+rMb+6oaRP/lL3+J++67D2+//TaWf5wxBsta+cSWFzTqIDrgnddLOBe4/6kzODeWQE/Yv+IVqfFEFrt7Q3j6gb2eejKk0nyvt74btZ4Kref1fCfLb2dfOze3Y2g0ifi8AU1hAAqmaoGAbgqE2xRAAImMCU1h+UWHcttIDNDN3CuMLx19/5rlLMzT5rAPWaPglXaVYSKhe/74llPvstX72nSLm/l2MvY5Hf8bYRB9OSEERmbmc4uV5p9WH4tn1vxcuyajvy+8OAXMzp4QNI897VUJyxL4xBOnkcyY0GQsvhbOGAMXvKI2tVJF7VTIh3jGXJzCK+JXMJGsXRus6xbe8ad/s/h0YeHeF64IRWJ4/U8/CM3hxWjTaQPv+F/+ds3tXv/S7yIQcH7Ofq/EvnpPH1TIzbbczXK7rVFjfzlejstO568a1RzvSj9TuP2GNhU3dAbwb/77S3hjovRUL1MpHds3BfHYJwcgsdwipo98b7Ds1DAL23/90ABi1+YwMjuHwasJ/HhwvGiql0KqzHBzVzsev+92yCXms7ZLYgz/7rmzeGMiid5IW5l7pyA+ccdWjMXnPduemCbHnY/+HeLp3P3d8uln1upnLJ8C5c/+5jzOjyerujctd3450TaVK6eAQNbgEMjdq+7uCUHKnxcLed7VE8L//MGdmJ03VqTvpXbTq2MjXs0XcYfd2FfVdC4PPfQQ7rzzTvzwhz9Eb29vU7yu7HWSxDCwNeJ2NjA0mkBsMoUNAW3FcWeMoSOgIjaZwtBowhP5XVBpvtdb341aT4UURcKhO7ZU9Vkny29nX0OjCSQyZv6b+3wnanFTBkXmSGRMYPFpSWnFgjqKzJGcN3Di7Nia5S7Mk8QktGlA4ernjXB8y6l32ep9bbqlUfO9HMX/3Hm5rTOAbZ0BfGQgN2/otWR2cUD97Mgs3rqeXvG5Od3CmbdmcOatGQC5m+XdvWEM5Bcr7e8Lr3gV28t+dmEScxkTioTcnOT53wshwMAgS8J2m1qponZKkrBh2QJZtWyDnzh1aWkAfdnpn19iAyYXeOLUJfzJ+29xNO3Pfe+s7e2e+JfvdjRtwDuxbz39k/Vysy13s9xua5YYWgvNGJerOd6Vfmb59oMjcYxMz2NjuwZVlsGFABcCEAADQ8iv4sr1OQxPzOHWniCGJ+Zw5focwn61aAAdKN4+di23/a09QWztaMfpN66BMRVzurliqjjDErg4kcK//NaL+Gfv3oIPvGMzQv7KvxA9P5bEpckUgj4VFheQJSyeFwt96zen5nDr5hA++e6tFe+/Xk6cHUNy3ii+v8uTmLTmvVvhMR4ciePStbmq703LnV9OtE3lyln4nRgXQHzexIZ2rSjPl66lIDGG/bduqknenOLVsRGv5ot4W1V3a2+88Qb+x//4H9ixY4fT+SEeN53WYVgCWpnVwH2yhDgXmE7rdc7Z6uqd70atJ6c4WX47+9Kt3Cvl5b4glthSR2S1bSwAV2dXDn5Vk6dGPb50rZDVUPwvbVPIh3t3d+Pe3d0AgPi8gd9czQ2qD16N4+JECtayeaQMS+SmiBmJ4zu/yrVBO7qD+UH1DgxsCaNj2eCwl0wkMuDITZe1nEBugNniQOxaMn8T79zAjpvtxtvTc45uV4nLNvdpd7tKUXtNiPdQXHbGQvvmU2RIEoMMBiEEuAC4ENBkhqQQiGdy7Vs8k5tCI1wqCAIrtl/4jCmAjQEFHQEVhsURnzcQz5hFfYTxRAbf/HkMT/79m3jvzm4cvK0Xu3pCtr8gKcybxQUsISCx3BzeEmMN01ZfnU2DA1Ca/N6tXDnz3+EsMpa9wdAoxxHwbv17NV/E26oaRP+t3/otDA8PU7BuQZ0BDarMoFscfmnla8pZi0OVGDo9duNf73w3aj05xcny29mXJjNk8nPHlRqn4QtTu4g1tgGwpSNQ1/J5DV0rZDUU/+2JtKn47R1d+O38HIrzhoVzowmczU8Bc24ssWJ+VC6AixMpXJxI4XsvXwUA3NgZWJxTfc/WCDaH/XUvSzmbw35IyH9BWWogPd+mhvwqLk+n0abKCPoVtGvyup+UdLPduLGz3dHtKnFDZzteH0va2q4WqL0mxHsoLjujVPvGGIPMABkMhpVbPLI7lJvyIeLXoEosP/C+MqbploCa327B8s+osoSuoA8b2zWkdAszczoyBX2DrMnx/NA4nh8ax47uIH7vtl68b1f3mm+trchb/osAzgUYy5VRYfB8W72lIwAJzX/vVq6cjOXfcMv/rC4b6G2kmOvV+vdqvoi3VTWI/sd//Mf4t//232J8fBwDAwNQ1eLXjPbsqc1iSsR9/X1hRLuDODeWRE9YWjFv1GzawO7eEPr7vDXnfL3z3aj15BQny29nX/194cU50SXGV8yZZ1rFc6KX2yYSUHFwT29dy+c1dK2Q1VD8r06bKuOOGzfgjhtzi4UZFscbEymcHZnF2atx/OZqAqmsueJzb0+n8fZ0Gj84OwYgt4DUnq25AfU9WzqwrbPNtVf337ezG9/8+TCSGROsVJvKgZBfwft2dkMIgbRuIq2bkBhDwCcj5FPRVuWc4W62Gw/t244//9kbMLkoWHtjIe3cfxWJ4aF92x1P+xuf3IPnh8ZtbVcL1F4T4j0Ul52xVvsWnzexuzeE/bdugkBu8fCbutrxxmTpOdGTGQPbNwWxY/PSl5o7Nrdj28b2FfOoM8YQ9MnIGDKi3UG8sy+M54cmEJ9fWsR8eDKFb/zkDTxx8hLev3szDt7Wi+imYMmylEsHyMXn2bSO6KYgesK+xfVEvOjgnl58+QdDiKfL3981w71buXIW9i8kBkTalobu3M5zpbxa/17NF/G2qhYWlUosdMFY7pUnWli0Oay2EMXSCsYWOgIqfLKErMUx6/EVjOudbzfqyckFROzsy955YqJNlcHyU6rMGxaCPqWi8i/sK5kx0abJkBmDJQTmdQshf25fQ6PxNVdvB1DVCu+r5ane10E9FomppGxO5KdR25RK2K2nWhxfJ2Of0/G/ERcWLYcLgeGJOcQzOiJ+DTs2t0OyOcDNhcCbU3MYHFlarPT63Nqvjna0qXhn/in1PVsjiG4KOjptylqeffEKnvz7S7BEblqXhSemFn5+8He24/fv2lb284okoU2T0e6T83HCft7dbDe+8NxZfOfMlbJ///TebfjqJ2ozcHXo8V/glSvxsn+/fVsEx4+8pyZpA0v1npg3oMhSfu4ewLQ4wm1qXdprLy2WRkg1vByXnc5fI6k0rpwensLnnzuLZNZCyKfkn2jNDaAHNBmf+8CtuP2GDUVpvHJ5Bt/4yUWkdQshvwqtzGd0k+Pv35jC918bxeDV0m3+O3rD+L3berH/1k3wqXJV6QBAu09BpE2FX139i2032t4nT8Wqvndbnt/4vI5//3/+ZtXje/f2jY6Vsdxi0KV+/9TpN8uWUwAIqBKCfhULQZcLUfH9tNucHBuoTb6a9z6U2GM39lU1iP7222+v+vcbb7yx0l3WRat2CCp1engKx07GEJtMwbAEVJkh2h3E4f3RxQakaBsuoEort/Gieue7nunZOW5O7svONk+eiuHxF2JIzhsL99kItak4ciBqe7B6QeG+OACpxL7spOdknlw9n9Z5jCtKq0zZanbONVCbYofdeqrV8XUy9jkd/5tlEP2VyzN45swVXLk+t3j+btvYjvv2bltxA22HEAKjsxmcvRrPDaxfncXobGbNzwU0Gf19S4uV7uoJQ1Nq+4TZf/7bC/jRb8ZhFfQmZQZ85J09ePh3d9rej8QYApqMgE9BQJVt3bS62W68///zAoavrZx7fMemdvzdvz1Q07Tv+dpPMRpfeT70Rfw4/fl7a5o2kPsS4bsvjSwusArknr7/1J1ba/blwYJ6xkFCasXLcRlo7XvmSuPKwvbDE0kYXEBmDFs7A6vG/6I+g8hN+7Jan+Gt63P4wWtj+JvXxzGXXfmlSMiv4IP9m/GxPX24oXNpapNK0/GpMiJtKoK+lZMVuNn2VnPvVi6/+27pwqk3pkoeXwCOlbHcfeu7b+jAry/PlryfBVCynDdvDGDwasKVmOs0J+/DndTM96HEvpoOojeqVu4Q2FX4DeGGgAZNlqBbHDM1egLVDfXOd32fHF77uDmxLwC2t8k98aBAYrlvzdMFT49Xk6e1vrku961/ITvb2FWv88nJY2yX3TcNnMpPo7Ypq1mtnto1Cf/LP30n3n1TJ37xxjX8xx++jrn8UxABVXHs+Ho59jXDIHrh015hvwpVzs1DmljlSbRqTKWy+QH13MD6m1NzWKsDp8oMu3pCGNgSwcDWCPr7IiVvjqu1UPZUJvdU8sL0JqYlEPQrVZedLQyoazLaNWXVdsCNdsPNJ9EXnsorvJleoFT4RtV60s8tFlvw9gFHxW90VcqNOEhILXg5LgPez1+tVRpXlm+/c3MQacNCMmOuWAxy8TNVvL2WMSz8/MI1fP+1UVwYL70+xru2deD3buvFb+/ogipLVaWjyhLCbSpCvlz89ULbW8m921r5/Y8ffycibVrR8f3lpeuOlbHc0/NGwdMGapmn6h+45+aick4m0vizv81NIacUxFyT1yfmO2npzfL1jw3UQjPeh5LKOD6I/v3vfx8f/vCHoaoqvv/976+67e/93u9Vlts6afUOwVo4F7j/qTM4N5ZAT9i/Yk6o8UQWu3tDePqBvdSgeIiTx83Ovnb1hAAInB9PrmsbJ/PU7Oel1+rAa/nxqoV6en00nl8QMvd6tcj/7Voqi+2bgvj6oQH8u+ODi3NXypK0OD+lE/W53thXy/jf6IPoXAg88r3BkvOOCghMpXRs3xTEY58csD21i13JjIHfXE3g7MgsBq/GcWEiBavEwGohiQHbNwWxJ/+k+sDWCDZUuVhSvcrOGINflRDQcouSKi7P3arrFt7xp3+zOIhdbk701//0g9CqnPO9HNPkuPPRv0M8bUBT2Ir5YXUzNz/sS0ffX/UXw15Nn+IOaSZejstO5I8syRgWUlkTc1lzzRhdiYsTSZx4bQw/PT+BjLFyoH5DQMWH39mDj+7pRW+krao0ZImhXVPwP333FUfu6eqhmljhZHwpFycFRNFx8hX8rVz8dDvmO4liOGkEdmOf7ceRPv7xj2N8fBzd3d34+Mc/XnY7L8+JTlY3NJpAbDKFDQFtxbykjDF0BFTEJlMYGk1gYGvEpVyS5Zw8bnb2dWE8CQGx7m2czFOzn5deqwOv5ccrhBDQLQ7dzP0bHInjwngCQZ8K0xLAsueGQ34VV67P4WcXJnHl+hzCfrVoIBLwRn1S/C9veGKu/LEDWzzGwxNzuLWn9AJg1Qr5VfyT6Eb8k+hGALk3c86NJRafVn99NIGsWXxjzUVucbLhyRSee+UqAGDbhjYMbI3kB9Y7sDnsszU3eb3KLvLrX8zrFq4D8Ksygn4F7ZpS1/nfFzxx6lLJAfSFn4UATC7wxKlL+JP33+Jo2ifOjiE5b+SfbCu+YZaYBEXmSM4bOHF2DIfu2OJo2m6nT3GHkCUUlxuHX5XhV2VsbNcwb1hIZUzM6RbWOxnArZtD+Le/G8JD+7fj785N4sRro7g0tTTF2EzawDNnruCvzlzBXTd34uCeXty9fWNFcdPiAi+9NYOL40mE/CuHjbzY9lYTK5yML+Xi5PIvULjIPdgAlI+fbsd8J1EMJ83E9iA657zk/5PmMZ3WYVgCWpmnvHyyhDgXmE6vvdgZqR8nj5udfekWBwTWvY2TeWr289JrdeC1/LiB8/yAeX7QPJsfOC+8KZpIZmBYAmF/6RsWTWZICoGJRAYGFwjLpbdzuz4p/pcXz+irHruFYxzP1P7Ytaky7rhhA+7IT59iWhxvTKYWFyodvBpHMmOu+NyVmXlcmZnHjwbHAQCbgr7Fp9QHtkRw48ZAySfJ3Sp7xrCQMSxcZ/rilC+BOg6ovz29ch709WxXiauzaXAASpmiSgyw8tvVgpvpU9whZAnF5caTm6ZMQUBTwLnAnG5iLmshra+My5Vo9yn4p+/qw+/d1ovXxxL4/mtjeOHC5OLUIQLAmTencebNaWwK+vDRPT348Dt7sSnks7X/hVgvMwbd4pAYgyyxxX6B19reamKFk/GlXJxc/p3J8p9LxU+3Y76TKIaTZuLcxJik4XUGtPyq4hx+aeUryFmLQ5UYOqt89ZvUhpPHzc6+NFmCgFj3Nk7mqdnPS6/VgdfyU2ucC2RNjqxpLQ6Yl5vjslDEr0GVcvNj+0r0gHUrt8jT5rB/1e2arT6bid1jHPHX/9gpsoTdvWHs7g3jU3dtAxcCb19P4+xIHGdHZnH2ahzXUytvVq6lsvjp+Un89PwkACDsVxbnVN+zNYJbukOQJeZ62YUQmMu/Is+YnpvyRVUQ8MmL0yHVwo2d7Y5uV4ktHQFIKH6CrRAXuflSt3QEVv6xwdNvtbhDCGlekpR7WyvkV2FxgVTWRCprImtU/9YAYwz9fbm1T/7wQBR/OzSOE2fHMDKzNL3dtVQW3z79Nv73f3wb90S7cPC2Xrz7xg2rTrlWFOvzc1hzLiBJucF0r7W91cQKJ+NLuThZ6s21QqXip9sx30kUw0kzqXoQfW5uDidPnsTly5eh68U3YX/yJ3+y7oyR+uvvCyPaHcS5sSR6wtKKuapm0wZ294bQ30dz4y3wwgIUhcdtc5ghawiYnEORJPhUVvK4lcu3nX0tzXeewuYQQ9Ys2Eaxv43dc6nS89ILx8RpXrs2i86TdR5frzELni6vZMC8lB2b27FtY3vZOaOTGQPbNwXxvp3d+NvXJxa3A7zd9lL8X2L3GO/Y7PyAaqUkxnBzVztu7mrHP31XH4QQGItnck+p56eAKbzZXpDImPiH2HX8Q+w6AMCvSujvi2BgSxgd7RomExlsCvlcK7tlCfzswgQmEhlsDvvxvp3daPPlFiQN+GT4FGfnJX9o33b8+c9yi3yVextfkRge2rfd0XQB4OCeXnz5B0OIpw0wWOBi6eZaYoBpAZGAioN7eh1Pe3n6EuMr5mc1LVGz9Js57jSKZuxfNQuKy+5az7UhSwyRNhWRNhWGxTGXNVddkNSOSJuK/9ud2/DP3r0VL1+ewV+dGcGrV2awMKMIF8Avhqfwi+EphPwK7rxxA/5wfxQbSzydXq6fw7mAxTmupwzs6gmCC4GTF6/ZLn+t2pNqYoWT91nl4qSc/yJiQWFRy8VPN2Ou07x2L+sEiomtq6pB9FdeeQUf+chHkE6nMTc3h87OTkxNTSEQCKC7u5uCdYOSJIbD+6M4enwQ44ksOgIqfLKErMUxm1+Z+vD+KDUOeaeHp3DsZAyxyRQMS0CVGaLdQRzeH63rytILx+3hZ1/FxYlUbuFCkfuGmzGGje1a0XFbK99r7esPD+RWAH/42VdxcTJVNIjAGNBpcxu751Il56VXjonTvHZtFp1z6zy+blkYLDfMpWlZDJODr3OOykISY7hv7zZ84ycXMZXSEfKr0GQG3RL5lell3Ld3G2S5eLtIQIXMmCfbXor/xeweY6cXFXUCYwx9HW3o62jDB/t7AADTczoGr8YXn1a/dG0Oy6+IjMHx67dn8Ou3ZxZ/l8xaaNdktGsyZEnCnG7WpezPvngF3zlzGXMZExyABOCbPx/Gp/fegN+/axtm0oAqSwhoMtp9Cvzq+gfUNU3Gp+7ciu+cuVJ2m0/dudXxRUUBQFEkHDkQxaM/Og+94IHFhYERBuDIgWjNFhhbSP+x5y9ANwUUmUNiufRNS0CWWM3Sb4a408iatX/VDCguu8vJa0OVJXQENHQENGTN/PzpWQtmlVP2vHplFv/HiyMYmZ5DyK/AtAQMK9fvXZDMmPj5hWv4+YVr2LEpiD96XxQDWyKLg5xr9XMkBlxPZfHg//4SLC6gyQw7NodWLX8t25NqYoWT91mrxclCuZ/5qvHTzZjrNK/dy64XxcTWVtUV9/DDD+PgwYOYnp5GW1sbfvnLX+Ltt9/Gu9/9bvyn//SfnM4jqaN7dnTh0UMD2N0bQjprYjKVRTprYndvCI8eGqBGIe/08BSOHh/EubEE2n0KukM+tPsUnBtL4ujxQZwennIxdyzf8ckFocKYXXm+y+9ricjPA73a4KOdbcqzc156+5isn7evzfUd31oSQiBrWkhkDEylsrg6O4+3puZweTqN8XgG1+eySGYMZA3L0QH0BbffsAGf+8Ct2L4piIxu4npaR0Y3sX1TEJ/7wK24PT9/deF281nLY8d3SSPEf78q4+audmzdEEBvpA1dIR86AhqCPgU+VXZ87my7x7gRdLZr2H/rJvzx+3bgyf/7nfjrI7+NRw+9E/9i7zb094WhlKk7iwskMibGElmMzM4jY3Dc3NWORMbE9Fxt5rd89sUrePLvLyGZMSFJgCoDkpQbEHjy7y/h2Rdzg9yGxRGfNzA6O4+3r89hMplBKmuCL7+jrcBH9/Qh5Cv9HErIp+Cje/qq3vda3ppa+cXGApH/ey09uC+KRz60E5GACs5zAzKc556Ge+RDO/HgvmhN01/i3bjTbJq9f9XoGiEuN6taXhs+RcbGoA83bMz1ZYJ+paIvpV+5PINv/OQiLl1LoU1TsCnoQ1fQB7ZKmzl8LYX/6buv4V89/RKee3kEqfw6KuX6OZuCuak3rqV0tKkyNgRUaIqModEEPv/c2ZLlr397Yi9WOHmfVS5OdgRU3LtrEzoqiJ/eibnr5+17WfsoJhImqlgauqOjA7/61a+wc+dOdHR04B//8R+xe/du/OpXv8L999+P8+fP1yKv65ZIJBCJRBCPxxEON86rIm6g11PK41zg/qfO4NxYAj1h/4rXkcYTWezuDeHpB/bWpc4K87M55Fvx2tpEUsfu3hCeuv8uPPD0i6vme2kalmTZfe3qCQJgOD+ewOawb8WULxMJe9tUU0flzkuvHZNa8sK1WXTOOXh810OIXMfS5EtTsegWh2EJVBHmHMeFwPDEHOIZHRG/hh2b20veDHEhMDqbgQAcO75Oxj6n479bcdniAobF8/+K/7/a88XuMW5kWcPCufFkbvqXkVkMjSWQMdZ+Qm7rhrbcvOpbcvOq90aK2+lKWZbAJ544jWTGzA2eL3vF2bCAkF/Bcw/dA7nMwqdA7guXhWlf7M6jvjzmTqV0ZC0OnyyhK6gtxtxatH+6buEdf/o3MPNfADDkhgUW/gvkppJ5/U8/WJMn4QuZJseJs2O4OpvGlo4ADu7prenTcF6MO62glfpX9eTluOx0/pqVG9eGEAJzeu4J9XnDKttf4ULgke8NrpyCRQjECt4wU2WAc8Aq0+3xKRLeu7MbB2/rxa6eEASw2M8J+VV86+/fxKWp0tPZTaV03Lo5hG8/cBfatNyXzvWos/XGCifvs8rFyWriZ71jbi154V62WhQTm5vd2FfVdC6qqi6eMJs3b8bly5exe/duRCIRXL58ubocE0+RJIaBrRG3s+FJQ6MJxCZT2BDQVgwCMMbQEVARm0xhaDRRlzoszI8kSWjTAGDp5nkhPyfOjq2Z7wvjSQiIVfd1fjwJBpbbhlW/TTV1VO689NoxqSUvXJtF55yDx9euhQFyPT9fuW7y/PzE7g+WlyMxhlt7gra2290bxqYS81J6QbPEf1likCW55PQeZn4wffk5ttabCnaPcSPzqTLeta0D79rWAeBGmBbH8LUUzo7k5lUfvBpHIv/kWqGRmXmMzMzjx78ZBwBsDGrYkx9QH9gSwU1dlX3h8LMLk5jLmFCk4gF0IPezInHMZUz87MIkPvCOzWX3kzEsZAwL1+dyZQtqCtp9MpRVBtSXx9zusL/o77Vs/544dWlpAD1fXQu1xgAIAZhc4IlTl/An77/F0bSXUxQJh+7YUtM0Crkdd1pVK/WvGlWzxOVG48a1wRhD0Kcg6FNgcYE53UQqYyKzbEHS4Yk5XLk+h7BfLRrcTmbMZc9jMygygywEuMg9YFD496zJ8fzQOJ4fGseO7iB+77Ze3LtrM27Vgrg4nsKV6ZVp5PaaWzj1zWspnLwwhdtuiCDsV3Hp2lzN62y9scLJ+6xycbKa+FnvmFtLXriXrRbFRAJUOYh+++2346WXXsKtt96K9773vfjSl76Eqakp/OVf/iUGBgacziMhnjKd1mFYAlqZm2yfLCHOBabTtXmFvdr8XJ1Nr7mdbnFAYNVtcouirL4fO9s4WUdeOybNrl71vfB0cOFT5U7PW04q0wrxX5ElKDLQhuIB9sJ59LOWRecjcnW1qyeMXT1h/P6d28CFwNvX04vzqg+OxHEtlV3xuespfXEOViD31Pg7+yIY2BrBbVsjuKU7uOpA9kQiAw6g3EPmjOWezJ5IZGyXJWtYyBYMqAdUGW3ayi9a3Iw3b0/bm6rF7naNhOK8O6jeva8V4rIXuX1tyBJD2K8i7F+5IGk8o8PgAuFlQXLF3Or5V5kYY5AZwJiAYQEDW8J4+3q66Evx4ckUvvGTN/DEyUv4wO7NuHlToGQaCzSZISkE4hkd87qFed3ChYkksiZHR1vpzzhRZ24fF9Lc6PwiQJWD6I8++iiSySQA4Ctf+Qruv/9+HD58GDt27MBTTz3laAYJ8ZrOgAZVZtAtDr+08inGrMWhSgydAc1T+dnSEVhzO02WICBW35fMwLBGena2cbCOvHZMmp2T9b0wDUupAXMvP1neqlo5/ucG1yVAAwB18feLU8HkF6ld+Nlax5zbjUpiDDd3tePmrnb83m19EEJgIpHF2avxxSlgrszMr/hcMmPiHy9dxz9eug4A8CsS3tEXzk0BszWCd/SGiwazN4f9kJB78hol7sWFyP1687KnxO1aGFCfSQOKJKFNk9Huk9Gmyq7Gmxs72x3drpFQnHcH1bv3tXJcdpOXro3lC5KOzubu+QxLwKcsBUlFWjbwtyx+CpFbMO9je/qw/9ZN+Ps3ruH7r41h8Gp8cZu0buGvXxvNpSsxSIxhQ0Bd8TaZbgmojCHiXyp/UFMgM2BOt9Cm5b4IKPycE3XmpeNCmg+dXwSochD9zjvvXPz/TZs24Uc/+pFjGSLE6/r7woh2B3FuLImesLRiLqzZtIHdvSH09zk7h2C5+cMK87M5xFbMY76Qn4N7evHcKyOr5ntpTvRU2X3ltmE4P77Wflbfxsk6slsHC+nZnYvNqfnn6j33W63nzVte3/H8ky+qLCHiV1bU98JAuW7xxakyFuakLpyGxc6c0vWed9qN9M6NJfD6mHNzojuJ4v9Kqizl5tNe1l9eOO8tnmuPDEssTg9jWGvPI14Jr87HzhhDT8SPnogfv5ufVmUmrS8+qX52JI5L11JY/n1DxuR4+fIsXr48CyA3z/etm4P5OdU7cNeNG9DuV5DMmGDgS4+e5+c0MXnu6fb37exedxlMzpHMcCQzBiTGsCmo4cauAC6Op7A5pGE8kV2cE70n7KtZHwAAHtq3HX/+szfy7Wb5OdEf2rfd8bSXq/f8rJXG+VrJZEx85Ufn8Nb0HG7qbMcXP7Ibfn9Vt1MNwa0+r5d4ff5er8dlr9dftey2Sbt7QhgciZdcz6nSerHzGZ8i457oRuzsCeP10QT8qpaLDyIXFyeT2YIpWwQ4R8nYKcsM9+7ejHt3b8abU3P4wdkx/O3r45jLLk0dY3CB63M6ZtI62jUFbZoEv6JAUxmSGQPbNwWxY/PSl7o7Nrdj28Z2XLqWgqYwcM4gSQyylJsQZuEekguBkxevVVUvHW0qtm9qx/nxlGfbLCfj52rnxGpriTXLNVnvstiNieWue9IcqlpY1E1/8Rd/gT/7sz/D2NgY+vv78V/+y3/B7/zO79j6LC2SQpyysCpzKmuhI6DCJ0vIWhyzaQNBn+z4CtOnh6dw7GQMsckUDEtAlRmi3UEc3h/FPTu6cHp4Cg8/+yqm53QUXtGMAZ3tGv7z779rcbu18g1gzX0BsLWfeteR3TpYrS4XPHkqhsdfiCE5b4Aj92RGqE3FkQPRilZCt5ueU5zK91pOD0/hyDMvYzZtrFjvvqNNwf/7k7fhXTd02H6q/JXLM3jmzBVcuT4HgwuoEsO2je24b+823H7DBtvbOMmt9Eam0+ACjp0rXo59Xs5bLXGen3Pd4sgaC9PEVDc1TL3PU6fNZU0MjSbyA+uzOD+ezE8JVh5Drl2/Plf6dVkG4A/2bcfv37XN+QwjV+dHjw8ia67MZ5sq4Vv331WT9h0AvvDcWXznzJWyf//03m346if21CTtBfWKM8vZjfO18tlvn8FPz19b8ft7d23Ctz6zt2bpuq3efV4vqVUfzuuxz6n81bsPXG9rtUn/+j0349QbUyvKv++WrpK/X61eKq3Lwus20qZAlSTMmxYm4hlkzNJf5K8VO+cNCy+cn8T3XxvDhYlk2XqRGLChTcHRj75jRT/klcsz+MZPLiKtWwj5VWgyg26JxYXCu0M+TM8Z66qXjUENk8ksLA7PtVlOxs/VzgkAJf9WzbnnVW61L2vFxE//1g1NU8etxm7sq2oQ/fr16/jSl76En//855icnARfNr/W9P/F3pvHSVaV9/+fc+5Se1Uv03v3zNA9+9IjOIwIOoMCLuiYYBJJQGMMGkHyNdHEqPBV8augfL+/SDaEhLgHIhohZhRBFGFExGHvZvbpZmZ6ep3eaq+62/n9cauqq7qWvlV1a+nu+369lOmqW/c859xzz3POc57zPLOzxUtsgAcffBAf+MAH8PWvfx2XXXYZ/vVf/xX//u//jiNHjmDt2rVL/r7eJywWy4uMgTthuKjEALkwUCtodIoQE7HL5/IavhMeaokYd4sXlkvJnTkhzH8vI/WvVhsly1pKbgBLtuWlG9bgvoNDuPPR41A1Bp4joATQGKCoDBwl+PQ7Nhua6Bh5dma2g1lyG+HfnjqFr/zseJYBHSjegJU+ofbahdQR1EBMhlPk8MmrNgHAkteYaTA0IlOlymtwCnAKvGl9xUzdZ7b+t/RyJulJTZVESBhZY1BVlh3LFNXvp9VAUjQcmwikPNUPjwUQXZQ0bSncIofb3rMNF61rqoiMtz48gN8Oz+X9vpJG1fsODuGOR47lHXtvuXpLRQ3Z1dQzizE6P6kE+QzoSVaDIb1a87l6oZJzuHrWy2bJV+05cC0oNCa5bTxEnkLVWEb9JwNxRCQFLhuHVo/dULuU2pa53ttGp4DTMxGEpWy96rXz+ML+bMN3Lk5MBvGt35zG717L3b8IAa7Y0oo/f9MFaF8UWi1j85/pYV8anAJmwhI0BjQ4BNgFDorGSm4XjuoG+ZmQVDdjlpn6c6m6AzCl79UrtR5f8unEvRvX4P7fnV3R495KxqjuK+n84fvf/34MDQ3hhhtuQFtbW1Zm2krxta99DTfccAM+/OEPAwD+4R/+AY899hjuuecefOUrX6mKDBYWSS7dsAaX9DZX9AiRpjHc89QQQnEF7V576l2zUw7tXoqJQBxff3IIgB4yYFObG3E57TihQDAZkHDPU0O4pLcZlJKCcifLM3IvI/WvRhult1MhuZPtVKgt73lqCLvXNuLuJ/V7iTwBJfpMhBKAEg2SwnD3k0P40KUXFDx6Z+TZpT+XclEUzRS5c5Ee8zmuqojGVPzzr4bAAAgUWaEUZA24/9BZ/MFF3eDyZf5LoDGGBw6NICKpWOMWQRIBGm08wRq3iOmQhAd+NwKAFb7m0Ah29TSYEsLCkEwVLI+jFJSSivWVcqiV/l8t5EtqCujHRBWNQVEZZE2DJGt48Pnq9dNqIfIU/d0N6O9uAKAvAofOh/BKIlHp4Kgf/qhc8B4hScVnH34Vl/atwa5uPa76BWvMCXETj6sFDegA8Mtj5zE6HUaj1waHwJn2niTHeQAQKaBBX4BTonuzyRpKHueLKb8SemYpipmfmD1OxmJKQQM6oD/zWExZsaFdqjWfqxeqPYcrh3rUy8up/Uql4JjEE5yYCgFxYFOrGzQRi9xGKFRN3yBXVAabQEFQeL5XTlsufm8bHAL+32PHMRmMY12TA3NRBZKqgacEHhuPmbDxecOGVjcUjaHBwYPnKPwRGXJabDbGgF8cncIvj07hDb1N2N/fiT0XNIGjBBeubcSunoZUGDqPXcA3fj2M8yEpNZ9RNZYKoTYVLK1dfA4RX/79nZiPyjUfs8zUn4Xq3uYlODEZAlB+36tX6mF8yaUTt7Z78KHvPLeixz0LnZJmek8//TSefvpp7Nq1y2x58iJJEl544QV85jOfyfj8bW97G5555pmcv4nH44jH46m/A4FARWW0WH1QSrCz21ex+x8eC2BoKoRGp5g1KSaJXfvjE0Ew6DvNlFA4RABpBpgGp4ChqRAOjwVSsuaTO708I/cyUv9Kt5FRudPbKV9bDk2FcO/BYQSjcsJDIHMSQwkFz2kIRmUcGBjHNRd1GZKpUHnpz6UcDgyMlyV3MQk+Hz8yiXBMAU+RmpylkhMRAh4awjEFTxyfwlWJOMj5ODUZxshMGF67kDICJiEg8NgFDE/rk8FC14zMhHFqMoxN7e6lmmpJjMhUtfIq0FfKoVz9b+nl0iGEQOAIhISRfXDaj3OzUaxx22DjKRj0RStjDAwEXoe5/bRWcJRgU5sHm9o8+KPXd4MxhoMnpvG1x49DY0Bc0XMrLEZW9ZiqT53QjZ9uG48dXd5EXHUfNrV59Fj2RfL1p4YMXffVx47jE2/bBEIIHAKnJycVOT05bYmkj/McpVlbLYwY009mlF+OfiyFYucnZvKlR44avu729+40tex6ohrzuXqh2nO4cjBjXW62bl5O7VcqhcakqKQm5s56rHRHImdKLBG+jU8kJoxJGhyi/pt87VJuW6a/t4OJPCSNThEcx2GNmwNjDBrTN6yLmd8m564+hwgbT9HoEBCTNcxHZYTiSuq0FAPw7PAsnh2eRavHhnf1d+DqHe1odttSZZyYCGFkNpI1D2aMQWW6/j4xEcTAOT9et7bBcLsMnw+BEoJ9m1oK1qUamKk/C9U9LjPT+l69Ui/jy2KdOHjOXxdyWVSekozoW7ZsQTQaNVuWgkxPT0NVVbS1ZRpk2traMDExkfM3X/nKV/DFL36xGuJZWFSE2YgEWWUQ8yy6bYkjQmAoeI1fY5iN5I4dW2x5Ru9VTcxspzOzYWgA+DwbxJQAKoDR+UjZMpnZlqPzkSXlVhhweiaEYExOJPbUvWaUhPHcKJOBGDQA+ZzMk47pk4HYkvfyx/Rjlt48NxMT4SmQiBGe75ogY/DHzGlLIzJVs7x6eu/K1f+WXjaP9DGGkMSyc+H/wBGCcFwBxxG0eGyJpKbZCX2XG4QQOG26MbrZJYISAlnVEJVVRCUVUVmFlCOmeiiupBbyAGDjKbZ2eNDf1YCd3T5s6/TCIWSfAFjMqN9Y/09exxhDRFIQkRTMQE9E6xQ52AQOdp4WZVQ3Ms4b0U+lUsvyazk/OT0bNvU6i/pnOc2HzViXm62bl1P7lUqhOiqalgrtoodi4zI+5yigapnfAbnbxcy2zHUvQgg4om9YU6LnKQnEC5/2ArLnroQQOER9w1jVGOajMuYiUkbi8KlgHN/6zWl897dncFlfM/bv6sSFaxuWnAcLHEEgruH4ZAAdDXZ47cKy62Nm6s9q9b16pV6ffb3KZWE+JRnRv/71r+Mzn/kMPv/5z2PHjh0QBCHj+0rGNV28q8MYy3ts7bOf/Sw++clPpv4OBALo6alMkikLi0rQ5BQhJHaM7TR7cR9XNYgcBQMreI1ACZqcoinlGb1XNTGzndY1uUCxcER+MRrTTVRdDc6yZTKzLbsanKDQPUkIzTQgseTnAJwij/PBeK5bGKbNaweF7vWKHG3EEm3UtigGYi58dhEC1Q3lthwzSymRkAVA4WsIgc9uTlsaksnk8niie4nwlEADQKDCY+dBCKmr965c/W/pZfMwOu61e+3w2DOfUzEnT+qRxe+owFEIHIU3Uc+wpCIUk/H69U04NxfBqakQFjurxxUNL4/48fKIH4BuQNjY6k55qu/s8sHrEBYXjS6fAy9ifkkZu3yOnJ/LqgZ/VAMSIWkEjsImUN1bXSjsqZ4c58vVT6VSy/JrOT9Z3+TCbzBj6DqLlcFymg+bsS43Wzcvp/YrlUJ15ClF0jzBU5r1uZYwcqZ/B+RuFzPbcql7yRqDjafY0uZBq9eOUExBVFZzzgsKzZU5SuCy8aBg+JM3rMfLI3N4+tR0Sg+rGsPBk9M4eHIaXQ0OvOGCJnDE2Dw/HFcQjiuQFA0cBeKKCoeYbdKqtz5mpv6sVt+rV+p1fKlXuSzMpyQjekNDA/x+P9761rdmfJ40aKtqcQmgjLBmzRpwHJfldT41NZXlnZ7EZrPBZrOZLouFRbXY3ulFX6sbR8eDaPfSjA0jxhjmIzK2tHsAMBybCOW9ZmuHB9s7l55EGynP6L2qiZntdOPeXnzzmdfgj8igRMs4cqcx3Wvb5xSwv7+jbJlKbcvFsZEVlWHP+kY4bTyCMQUkl9wa4LHzeOvm1qLLW8xbN7fiX351ypSyNrS50NPswvD5UEZcZwBgYAjGZPSucQNgGJ4O57+mxY0NbeYYMAzJVKA8SdHgj8oIxGQEojICMSXxXxmBqIJATNa/T3znj8oIxhQAmZ4/W9o94Cnq6r0rV/9betk8yhljCCEQeQJxUdxNxvSNRknRMjzXizmpUg2WekcjkoINbR7ccvUWUEIQkRQcHgtgcFSPq35kPKCfcElD1RiOTQRxbCKIH75wDgBwwRoXdnb5Uob1Fo8NH9vXhwOD40vK+LF9xpKDJds3FFMALHiqO0UediHzue7v78AXf3K4bP1UKrUsv5bzk89dvRX3Hzpr6DqLlcFymg+bsS43Wzcvp/YrlUJ1tAkk9Xe6UdguUIgcRURS4RQ52MWFMTRfu5jZlkbvtaNLD9nptvFQNT2fVDiuIJaW5NvoXPk9r+vA71/YielQHD97dQI/HRjHVJozz+h8FA+9NAoCIBBT0OrJzCWSb959wRonuhqdGD4fQisl4DmaiuNej33MTP1Zrb5Xr9Tr+FKvclmYT0lG9Ouvvx6iKOKBBx6oWgITURTx+te/Ho8//jiuueaa1OePP/44fu/3fq/i5VtYlIqmsZITMVFKcNO+Ptzy8CAmAnE0OAXYOIq4qmE+keX5Y5frC/VC19y0r89QmUbKM3ovM+pv9F6ZcscSky/dIzoqq3Db+EXtlPuam/b1QRQ53Hx5H+589DgkhYGShQmjxnTvipsv71sy6Us5bZk0ZMkqg5L8b8JYrqgajk+E4I9J8NlFbGhbSJZ3/Z61uO/Xw5BVgKdaqn6KpodeuX7P2lSiT42xVEKfxfdZCo4jRZVVsJ0IwXV7evC1x09gOqQnFxI5AknVJ81OkcN1b9C9oQpes6fHtOSJSZn+/ufHcT4Yh1PkQQkQVxjCkgKBI2hyCvjnX55KGcr9aYbymGyOwTEsKYhKWknvXaWohf63yE0lxmtCCGw8Bxuf6UGT9FyXVA2yoht9k7HIGWNQVYYnjk9hMhBDm9eOt25uNfT+l8riccPG09QYFFe0rDHBKfK4eH0TLl7fBEDf6DoxqcdXHRj14/CoH2Ep29D02nQYr02H8T+vjAEAOnx29Hf70LvGieHp/Eeu39jbCJtt6dAwuUh6qvujMighcCaOxztFHjxPU/oprjBwafpJZQBvUD+VSnr5ksJAiJpKKs2K0I+lUIn+bhS7nccVW1oKJhe9YkvLik0quhqpZX8rlnrUy/XUfmauQ9JZqo7NLlEPbRiUMr7jKAVH9djUMVlbsl3MbMtS7sVRAp9DgM8hQFE1hCU1ZVBfcv6epofXuG34wCXrcN2etXju9Cx+/PIYDr02mxE7XVIZzs3HIHB6mXaeQ1hScs7z0+cBU8E4PHa9LgpjCERleOx83byjQLb+5DkNNOEZrqisKP2Z/hzH5qP6CbaELlZULdX3JgJxOEQOHCFQmV4GR0nevvfRvb0VX7Mv9Z0Rqj2+GJW3nsY9i8pCWAnndp1OJ1566SVs3ry5EjLl5cEHH8QHPvAB3HvvvXjjG9+If/u3f8N9992Hw4cPY926dUv+PhAIwOfzwe/3VzTkjIVFkmdOTeOep4YwNBWCnAhL0dfqxk37+nDphjWl3UdjEGj2fYxcY2Z51ay/0Xvdd3AIdz85hGBUTs4l4HEIuPnyPnxkb5/hawDghm8fyrlgvmJLC77xZ3tKkzutLW/c24uLL2jWjeMJr3IpYZzK5/X50tk5PHBoBCMz4dS9eppduG5PDy5c2wgA+MFzI7j/0FmEY0qqfi47j+v3rMX7Lu4xfB8jGCnLKBkyMf3Y5mKZjFyTD1VjCwbv6IJHeLqnuD+W+bk/KmeFgKgGhOiLgyangC0d3pLel3TM1H1m639LL5ePmWN/Kdz75Cnc89QQglEFGgCK0seBYjFrDFI1huHzIQyO+jFwzo/BUT/mIkvHhM3FG3sbcfs1/SX9dilsgp6c9BPffwm/OjGd9X2x+qlUrrn7abyUCIOTzoU9Pjx885sqWnYt+3st621RGyrV3+pZLwPmyVdr/WTmOsRQGYvqCCDnd3s3rsHBk9NFtUu9rfNkVUM4ruCp4+fx3WfPFDU3T87nT58PISypkFQt73x7jVvE+y9Zi/fsyp1sM9/a4M8vXY8rtrXBbiDXSTUxug41wq0PDeDB589lJFfnKcG1u7uxfo0rVU5ybuZxCHjXjnacnYsW7pMVXLMDqIxtoELjSyljSK3HPYvSMar7SjKi7927F5///Odx5ZVXliVkKXz961/H//2//xfj4+PYsWMH7rrrLuzdu9fQb63FukU1eebUNG55eBChuIJGpwgxkdxyLrETecc1O4saSI3sglbD69soZtbfyL0A3ctc937gQQmBxhgikh5b2ug1l25Yg/sODuHOR49D0VhG8sykp9+n37HZ0ERH1XQPclnRMDgawHQoDreNxwVrXNCKHHpfOjuHrz1+AhFJhdcuQEgk3AwkvD0+edWm1GS1kFdoMfcxgpkeqEa841VNw5GxIMYDUVBQ+Jw8QjElFSrFnzSML/IOD8fNDzO2FHaewusQ4LUL8Dr4xH8X/u1zZH7uswtwiBTj/jgYYJrHlJm6z2z9b+llc6iUp91SJMdKVWPgOZLhVUUJ8MmrNuG6N6zL8lw3g+RYFo4rsAtcajyPyRpctuLHsnQYYxiZi2Iw4ak+eM6PCQOJkl0ihx1p4V82t3sgFJE41Ag/eG4E9/16GCrTF8VJNBSnn0rl1ocGcP+hkbzfX7+nB7e/tzKbCElq0d+T85BgTEkk59XAU/14vDtt/mCx8qhEf6tnvQyYK1+t9JPZ67BClOJ1W0q71NM6L52opOCFM/OYCMTgFvmCp1tzrUMkRcNMWIKiMcSV3I5Em9rc2N/fibdubc1KAl5o/WATOPgcAty2+jkppCgaDgyMY3Q+gq4GJ/b3dxR9git9/sVR3Riv58DSY657HQI4SnKevP7y7++AzyGmnr0/KuF///erFV+zJ6dDqsZMeycrOb6UM4bUatyzKI+KGtF/+MMf4rbbbsOnPvUp7Ny5MyuBSX9/ZSfPpWIt1i2qhaYxfPBbh3B0PIB2rz0rJtZEII6tHR5850N7VuSAamb9jdxrS7sbAMGxiULXJGOiBwvK9I0P7Maer/4S/ogMkSdZMeskRY9Z99xnrwAjRDeSqyxlMFcTXuWqxoo2lOdtA8bw6R8N5o07OB2S0Nvixp1/sLNgSBOz7mMWGmMIJWKCB2KFvMMzDeSLYxlXGgLAbeezjOG+dMN44jtf6m8ethK9Xzx2AS0e82KTmqn7zNb/ll5eviiKht13/GLJsfL5W65MLQ7TQ1XJiWSmyRM4xVCLsex8MJ4I/zKPwXN+nJ7JH84lichTbG33pBKVbu/0wSGW7hWnqgzvvfcZBGMKBA5ZbS6rgNfB49d/+xa4EwtoM5EkFdtueyzl9ZbetEl1x1OCI7e9HWIZ9aw3VvuczsJ86lkvmy1fLbDe2doRk9VUDHV1kXu5Ed3d2eDA1g4Pfn54EoFErpB0XCKHq7a1Yf+uTlywxnguJIGj8Nh5eOzm68Zqs9T8K64wEABb293guAVdnKvvV2vNrjENJyZDAIBNrW5QmhmTvd7eSWsMWZ0Y1X0lbclde+21AIA///M/T31GCKloYtF6xR+RoWgaKCGghIAkdgJTfxN9kUGge2gRoqsLkvi3xcrk8FgAQ1MhNDrFrOdMCEGDU8DQVAiHxwLY2e2rkZSVw8z6G7nXsYkgCEjBa45PBMHACl5zajKIu58cQiCxW05AMrwmCQg4yhCIyPjmM6dx1bbcSY3N5tRkGCMzYXjtQsaEMymTxy5gZCaMU5NhbGp3V/w+uZAULW8izaSRfHEYlVBcqXq4FIEjaYZvPtMAnsNr3GcX4Lbzy37CbRaW/rdIcmBgHMGonPBAz/SgooSC5zQEozIODIzjmov0Y9gLMdcBpO0TpRvX47KaMq4vXoAnqeRYlo8Wjw1XbG3FFVv1hMn+iIxXx/ypuOonJ4NZ45mkaHjlnB+vnPMn2gXY2OrBzm4v+rsasLPLB59TWFxUXp44PoVwTAFPkbvNqYZQVMH3nx/BVdvaIHAUDpGDXeDgELiyx7F7Dw7nNKAn/9bzYjDce3AYH79yY1ll1ROrfU5nUd9Yejkb652tHXZB1znNLhFhSUUopiAi6cZwI7r7fCCG//WWjfjwm3rx1InzOPDKGF4dC6SuC0sq/vvlMfz3y2PY2eXF/l2d2LuxJStR+mJkVcNsWMJcRIbLxsFrF+ou1ItRCs2/kj7pDEAgpqLRtVDHXH2/Wmv2uJw8iUgQVxgcYunlVANrDLEoRElG9Ndee81sOZYtYSkzU3UppBvWAV2JpP692PCeMMYjETOXpP0eadckbpT2WeZ9kp5ZurFf/y75X4vymY1IkFUGMc8xbhtH4dcYZiNSlSWrDmbW38i9dM/khWvSDd8MgEAJ4oqeAI0jBIqqLSSyYYmpBmOIqRqOTvihQU+Omct8QxKfTxo42m8W/pgEWWPw5gmTInIEQcbgjxVuTyP3CWgaJoNReBxcyuDtj2Z7g6cbyv1R85JpFoNT5HIYwPMYxxMGcbtArXGuDCz9b5FkdD6ihxDJ8zpRAqiJ65Yi3biefuQ6mSNCSnity4ncEWaNieXgcwq4bMMaXJY4yhuVVBwe0+OpD476cWQ8CGnRsXSNAccngzg+GcR/vTAKAFjX5NQ91bt96O/yodVrz1vmZCCW0k+5WKyfZFWDHNUQiOrx3W0JY7pT5BLJWIsbC8/Mhk29brmw2ud0FvWNpZezsd7Z2kMIgdvGw23j9YSkcRURed6w7hZ5N67a1oartrVh+HwIBwbG8fiRSUTSkoAPjgYwOBrAv9hP4R072vHu/g50NzoLysUSp2BDMQViIuyiW+SXlTdxoflX+iHoXKf8Fvf9aq3ZFU0DY/o8RdE0AJkbGPX2TlpjiEUhSjKiG0niaWEcxvTdwgWLXQ0y2aWR9KBf8KRPGNjTvelzGOaNkivCRcr4TxaM/qnykd+jv14VXpNT1GO8qRrsNHuXO65qEChBk1PM8evlT6H6M8YQU1TwRD+SF44rWT0+aQRn0JUUR/U4bjaeZlzLGBBT1FT/DMUV2HJ4IsQULeWBl7zPYiRVT0bT5XOCJu6NPJMTAqCtgKHDbHx2EQLVY5fbcsyYkrL77Jn9KT2ZZiCq4LXzESiqhumQBEKQCjmjagyqpk9qNAZ84X+OVKtqABKx+/IYwBdCp2TGEvfYedNjDVssjaX/LZJ0Nehjpcb0d3gxWmKs7GoovKAthMBRCBzFYlU5F5Zg4yk0BvAc0TdD0yYX+cbESuIQOexe34Td65t0GRQNJyaDqUSlr475c+ZmODMbwZnZCA4MjAMA2ry2REz1BvR3+dDT5EgZu9u89rL0U1xWEZdVzEf0OVbSQ90mUEMeeeuajB2dN3rdcmG1z+ks6htLL2djvbP1Bc9R+JwUG1s9sCd0N0czT/sC+XV3b4sbf3XFRvzFm3vxxLEp/M8rYzg5FUp9H4gp+MHz5/CD58/h9WsbsH9XJy7tawa/xDpBUjRMB+OYJRJcNh4eO78svNMLzb/SbTK51kmL+76Z70qhe/GUpmTj6dJy1RprDLEoRMkZFoaGhvAP//APOHr0KAgh2Lp1K/7qr/4KfX2VS2ZkUR003TUXao2N+UZJN/LrfyP131xG/qS+Zkgz1jJkbBiAAScmQ5iPSmhwiNjc5gahZMFrGUkP5sQmCFsok6MEzS4RPU1OnJwMocWTeQyIMYbZkISNbW60emyYSniMJVs7dWU+T7O0eqaHDtJPb+kxv+ciMhqdAra0e8AlFGj67VSN4ej4QrKL5HXpinhxnLpkHTXGoCUMFrn+qzGGBqeArkYHTk2F0eLW67/QbgyzYT1ebYNTSHnM5UtQucYjoqvRmTd+XiAqo3eNCwDB8HTua4IxGb1r3AAYhqfD+a9pceOPL+7Bf710DsGYAkI0veVSBgsGRQM8dh5v3dya+wFVgA1trlQbeB283s5JwzfTvTtcNh7f/M0wAmkxxvMn06zc0V4bTxcM4DlDpeiG8vTQKS4bb2oMdiMJSs3EzPJUleFng+MIxOSSkw1VGkv/WwDA/v4OfPEnh+GPyKBEy4rJqah6TPT9/R2ml/26ngZsbPPg6HgQ7V5bKnQBgz42hmIK+lpd2NhmTiiXfMiyhu8/N4JRfwRdPif++OIeCILeDiJPsaPLhx1d+jFfVWM4PR1OJSodGPVjNpztwTQZiGMyMIVfHJ0CADQ4BOxMxFTf0emF08YhFFdBoC24nif0fzH6SU+qvXDMnhICkaew8RQirxvVFy/Ab9zbi3964mQiQWzu+/KU4Ma9vQZbsDQkScW9B4dxZjaMdU0u3Li3t6Ix2Ld3etHX6k70N5o1p5uPyNja4cH2zuUXO9piZWDp5UxW2ztb6ySlRtne6cWGNN3NQFIOPYwtrMU2tOXeiHWIHN7V34F39Xfg2EQAP3llHL88NpWRjPSFs/N44ew8mlwi3rmjHds7fOA4FJyfa4mygzEZPCUYnYshpqhY47YtmQi2UJLQSrVxoflX0qJAAHhsFFFJTSXCtvEE8xEZW9rd0BjDUyfOo8EhoLfFhWMTobLflULvnU0gqb8XO4TV4zu52sYQi+IoKbHoY489hve85z143eteh8suuwyMMTzzzDN45ZVXcODAAVx11VWVkLVsKpEkZWw+WnY4F4v64qWzc3jg0AhGZsKQNQaBEvQ0u3Ddnh5cuLaxqPsks4977AJEjkBSdSXtFDl88qpNRd3PLLnNqp8ReYzW/wfPjeD+Q2cRjinQAFAALjuP6/esxfsu7jF0LwCmXHPh2kb84LkR/NvBYeQKUEIB/MXeXrzv4p6S2iWZTHNxIk1/MjxKKplmZpLNxWEBqoEnRzLNpKe4z+RkmmZRrf5difLS3wNG9L7mcQi4+fI+fGRv6QthM3Wf2fp/uScvW+3cd3AIdz56HKrGErE5dc8oRWXgKMGn37G5rL5biGdOTeOWhwcRiqtocAqwcRRxVcN8RIbbxuGOa3bi0g1rUqFgJGUhiWmxiUxzcdfPj+ORVyeQnueYI8DVO9rxibdtXvL3jDGMzccwcG5eN6yP+jE2v3SYMIEjeZMrEwAfLUM/LYajure6LWFUFzmKz/33IO4/NJL3N9fv6cHt7y0+kaFRbn1oAA8+fy4Vmx3QDffX7u6uaLlG+5uFhRHqWS+bLV+tWC3v7DOnpnHPU0MYmgpBVhkEjqCv1Y2b9vXlrV8pvzFT3sXPJaaomIvIcAoUn7hqMy5c22D4fqGYgsePTuJ/XhnDmTwJvwVK4BQ59LW6cf0b1uadny+e04scxYZWNy7f3IKDJ6ez2mttowM/fXUCwaicWr8m5+3bO30VbeNC8y9K9A2HuKJlbHgToofM6250YCYkpeRqdouYCsahaij7XSn03vFUN/GbUU41WC1jiMUCRnVfSUb0Cy+8EG9/+9vx1a9+NePzz3zmM/j5z3+OF198sXiJq4BlRLdYinRjrdcupBargRIN3xnKmOlH1CptsC4kt9n1MyLXUvX/wXMjuO/Xw1AZwNP05GS6QeIjb+5NGdKXupeZ13zxwJGcWeG9dh5f2L8NF65thKxqGfHB/WmhU/xpiTXTjeHBmFz1ZJo8JRkGcMYYxv0xROK6sZYnBK1eO965ox271zXB51ieyTRr0b/NKm/xe8BRYpox0kzdZ7b+XwkL9dXOfQeHcPeTQwhG5ZRTtBmbP0bIMAQkNrGMLFI1TU9kmjSuJ+Ou50tkupi7fn4cBwYn8n6/f6cxQ/pipkNxPfxLIgTM8HRxscWdAsWt79qKN/ZVblH3j784gR+/Mp73+0oa0W99aKCmBvxS+5uFxWLqWS+bLV8tWenv7IKRT0GjU4TIUUiqhrkCRr5SflMJufM9lzf0NiMU19dLxTgQMcbw6mgABwbG8Kvj53Pqc5owIn/iqo3YtynzxFa+Of1MOI6opMIpcmjz2mHjOUiqhtG5KCKyCgLkNGJ7HQI4SiraxvnmX+/a0Y5fHJvCbFhKnZhPHlwDA9x2Hq0ee4ZcHAVaPTbduF7mu1Lo+QJYVu/kSh9DLDKpqBHdbrdjcHAQGzduzPj8xIkT6O/vRyxWvYR7xWAZ0S0KoTGGT/9oMG/YkOmQHoLkzj/YWVSohkqHljAq91ev2YnPPGx+/YzIl6/+qsrw3nufQTCmQOCQFQ5AVnVv6IduvBQcRwy1ZSnX9LU6EZM1BGIy5iMy7vrFSYzPR+EQKaLSgmGFED1+HkcpOEoQrcG7n0wKZxc4+BwC2ry2VOJMPV54tqe4Q+CyEshVO+RJpanU+1uN8ha/BxxZODaoMQ2SoofFeP6WK0sK7WKm7jNb/6+Uhfpqp9Bx5kpj5nFpVWO6QV3VICeTmSoskQRLR5Y1XP3Pv0YeZ3AA+gbwI//rzanQLqUSiMp4dcyfiqt+YjJkyNC/qc2diqu+s8uLBpNidhqt+9EvvsP08CqSpGLbbY+lPNBzhenjKcGR295e0dAutQiBYLHyqGe9bLZ8tWalvrOaxvDBbx3C0fEA2r32rHATE4E4tnZ48J0P7UnVt5TfVFL+pZ5LTFYRjCkIxxU93KyR+zKGT/7gFZycDELRWN6TW3s3rsF7dnXiwrUNYEDOOT0Dw7m5KKKyBodA0dPoBMcREMZwbDKUyv1iE2jqNxrTEFcYCICtHW5wafG0K9HGi+df79rRjhu+9zyOjgfQ5rUhLutzGI4QTARiiCQ2BC5ocS3UMyHXlnYPPvX2zZiPymW/K4We73J7J5ebvBalY1T3lRQTvaWlBS+//HKWsn755ZfR2lq9OMEWFmZyajKMkZkwvHYhwyAG6PHBPXYBIzNhnJoMY1O78TirlJCiri8Wo3I/cXyqIvVbikL1f+L4FMIxBTzFonhu+t881RCOKXji+BSu2tZmqC0ZA1q9IuwCRSAm47dDM5nhUhaHUYnKCMaUjKPhScJSbiO5qmplhxWnBPDYcyfSTBnFF4VK8dgFiCYZpirdL6tNpd7fapS35HvAaQhGZRwYGMc1F3WVLXs5WPrfIhc8T2vWNykl2NntM+VeHCXgKJeVWCzdc/3rT5wqaEQGAJUB339uBB+4tLyEf16HgEv71uDShGf54Dk/vvDjV8GgJ2CLybmz15yYDOHEZAg/enEUALC2yZkwqvuws9uH9hITY3//uRFDdf/Ko8fw4b29qfjqNp5C5GjWZm4x3HtwOKcBPfm3foKN4d6Dw/j4lRtz3MEczOxvFhZmYOnlwqzUd/bwWABDUyE0OsWssZUQggangKGpEA6PBVL1L+U3lcLIc7ELuj5udokISwpCcQXRPGuzJKcmw5iYjyY8rQkisgp/VEZoUZ6ogyencfDkNLobHbjkgmacmQ5lzenjsr6xzlNAVjXEZA12UPijmaeKk57eOnpyNQYgEFXR6FqYT1SijRfPvwbP+VPPmBIKhwgAHKKSCknVwCeSZcYkDY7EhnNSruHzIVBCsG9TS9lyFXq+y+2dXG7yWlSekozoH/nIR/AXf/EXGB4exqWXXgpCCJ5++mnceeed+Ju/+RuzZbSwqAr+mH58ycvlXuSJHEGQMfhj2YnAaolRuScDsbqr32QgBg2651o+NABHxvxodokIxGT4F4VH8UflDON4KJ4dgqXSiDxNGLuzDeILXuGVTaa52qn2+2tmeUu9B5Toezaj87ljPVYTS/9brEYoJbAnjOvnQ3FDvxn1m/++xhQVhBKscYmgiWSqMUVDVFIRlfX/5XJUPzsbwdnZCH46qIdhafXYMozq65qchgzcRus0Oh9BXFYRTzutRRKJS0WOwiYUb1g/M2sstI3R6ywsVgqWXl6dzEb0mNYil9u5xsZR+DWG2YhU1m/qAUp15xSPXYCiaolwL0rO/Cbp83NCCFwiD5fIQ1E1+BPrxnTHqXNzUfzX3DkAQFxhaHAKsPO6blKZHlOcUkDTAJXpkc/TT6clE5oTikSS8wVZcslX6TbO94wVTa8LR/WY5HodFgz89frsLSzqkZKM6J/73Ofg8Xjw93//9/jsZz8LAOjs7MRtt92Gj3/846YKaGFRLXx2EQLV458tzhoN6F5fAiHw2c05Fm0WRuVu89prVj+NMYTjSsoD3J8wgCcTwCgqQIiWitW22Abw41fGC8ZgNROnyCEuq+AoBc8RcIQkvBP1f6uMQVU13PyWjdjZ7YXXIWR5LVpUn2q/v2aW1+a1gyIRkiCHPSl5XLSrwVm23OVi6X+L1c66Jlfq37nsv8kF9KZWPYyKpGiIK6rheOuFWDzuEELgEDg4EjooKqsIx2S8bXsHJoMxDJzzYyacvSCeCsbxy2NT+OWxKf2+DgE7urzoT4SA2dDqzpkTo8tnbAzKdR1jLGVYDyaiSxBCYEt4qtsFDiJPIeQx7qS3eyGMXmdhsVKw9PLqpMkpQkh4Fdtp9jokrmoQKEFTWjivUn5Tb/AcRYNTRINTRExWEYjKCEsqkhGK883PeY6i2SXCKXIIRGX0NDlxeCyQseYMxhUE4wpEjqLBwUPkudRJJ0L0cIsAwNNFeioVb5whfRWbS59Vuo3zPWOeUpBE3HZCsuuwHJ69hUW9UJIRnRCCT3ziE/jEJz6BYDAIAPB4PKYKZlEZVlocZDPZ0OZCT7Mrb4zjYExGb4sbG9qKW6CZ1eb57pMud7NLhKQwqEwDRyhEnqTkfuvmVvz8yOSS1yXrl6+89GSa8xEJJyZCOB+OQ9MAgSMIxjJDpSSTbhYyHzAABkPdGSaZPKbRJaaFSEnzDl8URsXn0D0cCMkdF0+XU4913dfmwVu2toASPU77iYmQ9U5VCUPvgVuEJKf1byG7f5eLmePFWze34l9+dQrBmAJCtNQkXa+vBkXVY6Lv7+8wRfZysPR/fbKa4zVWOx77jXt78U9PnISiJZJ1AamEXkk1xlOCj791Q0ZsbiUtkWlc0RCTizesL9b3cxEJksogcnryslBcQW+rBx/ee0HKU33MH0slKh0458fofDTrvv6ojN+cmsFvTs0A0HNvbOv0or/bh/4uH7a0e2ATOPzxxT347rOnl4yJ/scX9xiqD2N6SJpY4rg9oIcaExNhYARON7ALHM1u9zwx0W/c22usMUuklu9ard/zWpdvkRtLL5tPrfu6kfK3d3rR1+rG0fEg2r2Zp3oYY5iPyNja4cH2Tm/O37R69HAjsqpB4Ci8Di7nb2pZx6VIhnuRFQ3Pn57DqD8Kp8ihp8mJ4elwzvVAKK5gQ6sHN7z5ApyZCeOVET+efW0G8xE5dV9J1TAVkkCQOA3KADtPwMAQlhQIHMnQ+cmm103oCwrS68jcqEg+ly3tHmiM4akT503vX/n6hV3QT38lY6LbxYV5Ujly1fpdMZOVVBeLylKSET0dS0kvH146O4cHDo1gZCacyi7c0+zCdXt6cOHaxlqLV3MoIbhuTw++9vgJTIckPf40RyCpukHMKXK4bk9PUQZSs9p8qftct6cHdzxyFKdnwhnGaEJ0D7Pr9vSA40jGdWkn0UCI7oG9pd2N/35pDCcmA3hpxI9AVE4t8ikhIASIF5Ep3SwcApdhAE/GEV8cQmXcH8Uvj05hwh+FoulH2da4bUW3t9F+YL1T1cXwezCtvwdJQwshQEPiPTBrg8PM8YLjCK7fsxb3/XoYsgowqoGjBBoDFJWBowQ3X95XtUSNRrH0f33wzKlp3PPUEIamQpBVBoEj6Gt146Z9fbh0w5pai1dR7js4hLufHEIwKkM/ZA188SeHcfPlffjI3r6KlCmKHK7d3Y37D40AWFhEp9uVr93dnZXckucoeI4i3ckr6aUekxcM7KzAjnJy3Pn8fx/GqfOZYUtmwjJcQua4QwhBV4MDXQ0OvGNHu35dKJ4yqA+O+jF8Ppy1yR2VVbxwZg4vnJkDoG+Qb27zYGe3D69f14hDp+fyynj1jvayEqpqaYb1dHhKsb+/HQ+/rJ9Ky9VMudrdTGr5rtX6Pa91+RbGsPRy+dS6rxstn1KCm/b14ZaHBzERiKPBKcDGUcRVDfMRGW4bh5v29WUYAZO/ufmBF3F0PJQx9pN5oMEpZP2mlnUs5V4c1euhaiznesAp8gjGJNz241dTa4kL1rjQ7BTx5InzGaFeGJDaNI4pepJRguxTaJrGQAhL5ObQ5yJuO49xv4QGpwAHTyFpuqGap4A/KuGm/3ihIv2rUL/gKAVH9bjoMVnL6C+lyFXrd8VMVlJdLCoPYYVm62lceOGFhuMWvvjii2UJVSkqkWl8bD6aNdGvR146O4evPX4CEUmF1y5A4PRjToGEseeTV22yjH4JMgx1TA/JUKrh24w2N3IfjTHc8chRBKKKPllI/JYQPV7367obIPAUo3NRnJkJL5kYrBq0eW24YI0LisowcG4eUg6h3DYOn3vXVlx8QfOS9zO7jy/VD6x3qroYaW8AuOORo/BH5ZybSbdcvdX0Z2LWeAEAP3huBPcfOotwTAGI7tnqcQhlGwTL1X2V1P+V0MuriWdOTeOWhwcRiitodIoQOQpJ1TCXWEDfcc3OFTv5v+/gEO589DhUjYHnCGjimHJy4+nT79hcMUP6fQeHcMcjx3KesCIAbrl6S0llM6YnME16qsdlLSum6l0/P44DgxN577F/Zzs+8bbNhssMxRS8OqYb1QfO+XFiMpgz0bZRii2/WO76+XE88upExjyGI8AfXNSF29/bnzccTLnU8l2r9Xte6/JXIvWsl4HVq5tr3ddLKT/D+JcwChcy/t13cAhf/dmxnGtBjgCfeWdp+ssoZrZxvntNBWMIRhfm0kmSJ5+dIoc1blvGWoISQFb18KNajtCi6SQ91G0J55aYrKVOpLnsPK7fsxYb29yp9YHCAIEStHhEnA9JUDVW8f6Vr1/s3bgGB09OZ3ze7BYxFYwXJVet3xUzWUl1sSgPo7rPsCf67//+76f+HYvF8PWvfx3btm3DG9/4RgDAs88+i8OHD+NjH/tY6VJbVASNMTxwaAQRSc0IO2DjCda4RUyHJDxwaAS7ehqsMBQALlzbiF09DWWFYCmnzeOymgqBMh+VcM+Tw5gLS3CIHPxRGSpj0DQGVWPwR2X83Y8G8x4JZ0xX7M++Nlt6gxQgGSdcjxmue8lJioZmt4iZkISYoqU+T9aSgUFWgYik4ovv3o5bfvwqXDYePS4BoZgKRdPAUwq3ncNsWMYPXhjF69c3FWz/SvTxQv3Aeqeqi6H2/t1ZALr39vpmV1a4oplwZZ6JGeNFkvdd3IM/uKgbvx2eQSAmVyU0hREs/V+faBrDPU8NIRRX0O61LxzZpRzavRQTgTjueWoIl/Q2r7jjqIqi4e4nh6BqDCJPQBMhkCgBKNEgKQx3PzmED116genvT7JsABBoIqkY08sm0L3QSi1bjxHOwcZz8NoFvTxVQ0zRvdRDURmPvJrfgA4Aj7w6gb98y0bD3uBuO49LeptxSa++WR2TVRwdD2Bw1I/Bc34cHgsgVsQJtJ8MTuAPX9+D7iaHYSNfMXzibZvxl2/ZiO8/N4JRfwRdPif++OIeCALFyGwkIxxMMpGpyNGy3oFavmu1fs9rXb5Fbiy9bD617uulln/phjW4pLfZUBiKpP7SGBLxwklaeCxWUd1ZTh2LuZeNUiiqHlTFKXBo99ohaxoIgMlADDGFQWP63IGAwMYTNLtEnJ7RT3ddsEZfQyiafkpsPipnJexOeqhLKkN3gwN/uLsbs2EJbV473rq5FRyny5K+PvDYBXzj18OQFA3tXjs4quc1qVT/KtQvbnhTb+rzBoeA//fYMYz7Y4afSa3fFTNZSXWxqB6Gjehf+MIXUv/+8Ic/jI9//OP40pe+lHXNyMiIedJZmMKpyTBGZsLw2oWMuL0AQKBnux6ZCePUZBib2t01krK+oISU1RanJsM4Ox2CS+QhJ4x5qpYwfjPdAH5k1I9P/9cgGFhGws184VIicp5FrAnBxHXDA0ntoidjkOpGct1YTimBqgFRSQEhgNeeO6FmTNEwF44jrmjgKcAtSlxCQMBTDeGYgu8/N5Lqmxyh8DkyrzXaNyvVx/P1A+udqi5G2nt4Wp/8eu0CKCGwCwT6gUqdSj6TcseLdDiO4J07O9DisZlyPzOw9H99cngsgKGpEBqdYpaxkhCCBqeAoakQDo8FsLPbVyMpK8OBgXEEo3LCAz1Tb1BCwXMaglEZBwbGcc1FXRUrOyu5GAAQc8vmOQo3RwEb8B+/PbPkSTKVAd9/bgQfuHRdSeXZBQ4Xrm1MnaRRVA0np0IYHPXjpwPjGJnLjqmeDgPwwW8/hxa3DTu7fejv9mFnlw/rmp2mbWAKAs1bv0LhYEReTxguJAzrAkfAG/Bcr+W7Vuv3vNblW+TG0svmU+u+Xk75lBJDMuXUnamiSEV1J2BuG+e7V0zSw6PxieSahBD4HCKikgpFY+ApIKsa4jJLrBUASWGp5bSkMNgFCoCCpxoCMRkESBnS01WwojGcno3g3qeG8e7+Dmzr9KYM6EDm+uDERAgjsxF47XqoGX3znaWM6ZXoX/n6Rfrng+f0sG7FPJNavytmspLqYlE9SoqJ/sMf/hDPP/981ufvf//7sXv3bnzzm98sWzAL8/DHJMgag5fLvXgROYIgY/DHpCpLtnxQVA2BmJJIlCkjEE38O+3vZDLNQEzBTDiOcFwFIBe87wtn88cVLRXdMzxh+E54icdVDTs7fTgyHoDXzoOnNOU9zhFdeWuMYSIQBxjQ7rPlXOxqjCEUVwBNDxOTC5EjkDXdAyDfepkQfRIy6o+Y0jer3cfNKI8Qktq8APQJTTLOHgFJxe5L/RtpsXfZ4nsl/pujjIy/kSgvde/cSV2T3yVJLzdXHEA1sTmkacg4KaGZlC3WSHvLCcuSYI1zFcXS//XDbESCrOq5H3Jh4yj8GsNsZOX1+dH5CDQAfB4dQwmgJq5bSWWfmV2Ig54rsWaSiWAUJJFYtFx4jmJrhxdbO7wYPh9a0oie5HwojieOTeGJY1MAAK+dx46uBaP6xla3IQO2WSiaBkXKdkaghEDgdYO6jeMSCU0zjeu1fNdq/Z7XunyLpbH0sjnUuq9Xo/xa6i/A3Drmu5eiaWAM4CigavrfAJf4L0l9ThIGbJXpzm6Arkv1f+v3VJl+L0oBaECr1wZVQ5bTWyiuO4Z9/7kR7F7XiP27OnFpXzO4NM/lxWsZxhhUBqgaA6UEPNGN/tUeS0t5JrV+V8xkJdXFonqUZER3OBx4+umnsXHjxozPn376adjtdlMEszAPn12EQHUjky2H1pRUPY6vzy7m+PXKgjGGmKzBnzB464bwTAN40jCe/l1Eqn7ce7tA4RR4BGIyeKp7TtE0z3Au4RkekxV9l90uwC7QLMNpTNEQkxRcta0NZ2fCiaPi2YpCSiTRAFC4rxi5hhLEkVjY55ioMaZ/3OVz4mU6X3bfLKWPU0JSyVKTBmyaMGyDLHxPE4Zs/TPdMH1Bsxs2noIBevzVRUVGZRV2jmJDiwedDY6UMTxpNF8tx8EYyzSwa0w3rGdsBjCkPmOMJeIQ6h4hGtP/q8ctpFA0luq7LM0XRFIM9stVMs5VEkv/1w9NThFCwtPKTrNPBcVVDQIlaHKuvD7f1eAExUIYlcVoSR3T4FxRZa9rcuX8PKn2kzbzre0+rG92pmKrx2T9v+VubHb5Sq9TIKbgmaEZPDM0AwCw8xTbOr0po/rWDm/O022VRmMMcVlFXAZCUFKfc4l5VzIkDE+BuKLCIWYvnSr5rtX6Pa91+RZLY+llc6h1X69G+bXUX4C5dcx3L55SEJKoC0HqxNjizwWOA89RcIxB4fTfEwJwaafbOKL/JulEJFAOHhuFz84jpmiYDUsIL7IRPH9mDs+fmUOzW8S7dnTg6p3taPXaC65VNY0hpmig0J3bZFWrWH6PxZTyTGr9rpjJSqqLRfUoyYj+13/917jpppvwwgsv4JJLLgGgx1775je/ic9//vOmCmhRPhvaXOhpdmH4fCgjnjCgG6KCMRm9LW5saMu9OKtXVI0hFFNSBvHFHuH+PMZxeamz0BWAksz44bKqocEp4t39HfA5BHgdArx2Hl6HoP9tFyDyFBpj+PSPBvM+u+mQhE1tHgAEw9Mh2MXMAT79+b51cyt+fmSycD9Y4wbAMDwdLuuaja1unJwKIxhXQIiWcdxeYxoUDfDYefzxxT0YGPOX3DeTnvY7u71Y3+LCqckwHJ7Ecayk8ZvpSWK2dHjw1i0tEPjsjYZi2b2+ERvbPDg6HoTDy2XcjzE9PM/WDg8uXNuwagzmuSCE6CEPyrxPu9eOze16e7ttfFZ7z4ZlbO/0gjHg2EQQbptN98JMuyYcVrC53YM39jUBCQ/NpKFeY5kGfI3pE1qW9rcZHp0rAUv/1w/bO73oa3Xj6HgQ7V6a9V7MR2Rs7fBge+fKSwq3v78DX/zJYfgjMmguHaMy+JwC9vd3rKiyb9zbi3964iSUxPiUyxudpwQ37u3VY60KXIZhWlI0xBQ1b9LSpfjji3vw3WdPFwwpwxHgP/78DTg2FcTgOT8GRv0YmgplJWmLKRpePDuPF8/Op+Te1OZBfyIEzI5OH9z2crVH6agag6rpbdXiEdHZ6NTnKukb8AnrylxYwrZOb0XetVq/57Uu32JpLL1sDrXu69Uov5b6CzC3jvnuZRf1jc+IpMIpconQLPk/J4TAIeqOaowxOMTE+oEBNkHfTI3KGhwChS0R/kXXr/om64ZWN960YQ1+MjCOM7MLHvwzIQnfffYM/uN3Z3BJbzPe3d+B7iYnXiu0xm5xo91nw8hsBA6Rg8cuwCVyZa9bS2lHIP8zqfW7YiYrqS4W1aOk2elnPvMZ9Pb24h//8R/xwAMPAAC2bt2Kb3/723jf+95nqoAW5UMJwXV7evC1x09gOqQnthA5AknVB2ynyOG6PT01TYAoKVpaqJRMo3d6vPD074IxpWDm7EogcEQ3dNsFeB08PHYBYADPETS5bOhrccLnEOF18Bidi+Lbz5xGTFbhdYgZbd7gFPDJqzalYo7mw9Cze8NaAMDXHj+B80EJNoGCI/rxtLiswWXTny/HZd7Lxi/srscVLXGvntS9pkNS1gI91zW5ZLr+knU4ORnCfb8ehqwCPNVSZSmavsi+fs9aCAItKJNL5PDnl61Ho1NMed8n/yfQzERhf33FJtzy8CCmgnH9GHbCC15RNXgdAm6+fAPEhDFB05ihBDx5nwsluGlfH255eBDj/ih4qm94UEKgaBo8dgE37eurmQG93PoVg6JoODAwjtH5SMUSYaa390QgjganABtHEVc1zCcyp3/s8g0AgFseHsRkUMq6xmPn8Zdv2QBfiZ4EWUZ3LMRPZGl/Jz3qU2FyCnzH9C8zxjECwGYwIWAtsPR//WDkvajlOFRJeJ7i5sv7cOejxyEpDISoqTFfP8ZNcPPlfRVJjJZedlxhIFjwQmPQjcGVKlsUOVy7uxv3H9LjHOfa27t2dzdEMbdHdzLZZjJpqe79phvUo7KKuKIV3DAUBIqrd7TjwGD+5KZX72hHW4MdbQ127NvUAkA/6n54TE9UOnDOj+OTwSyHBkVjODIewJHxAL7/3AgIgAtaXOhPCwHT7NZzRWiMmZLM2SiZc7F4znnPey/swkQgBpGnsCXa2caX71lf6/c8c74Tg0PkUnPMqKTCY+dX7DizXLD0cmnkmitX4l0zOievxru+WHdyVAUBAQODqlVWdwKL6xiDQ+BS676orMJtyz+e5Fpv5GsvnltYL/qjcqqM5OeUEMxH5YyxrMmlrw+mQzLsAgUlBLKmgWLhFHhcYRA5ZIz9f/rGdbhwbSPee1EXBs75cWBgHAdPnIeSCKKuMaROYTU69XjoU8E4fItsA4vtMVFJRVRSwVECt013tKuEd3op/c7Ibz66tzdvv6/G2rGe3juLlQdhFXSv+8///E+85z3vgctVHx7OgUAAPp8Pfr8fXq85u0lj89Gs5EX1yktn5/DAIT2Ro8z00AY9zS5ct6dnSWOuURhjCEvqQqiUxfHC83iKx/Ik06wkLpFLeIDrBnGvPeEFnvh3und40nCeHi4loz01PYTJ4vY0q82N3OcHz43g/kNnEY4pSEZzc9l5XL9nLd53cU/qXunXJaOtLL7urp8fxyOvTmR4m3FEXxx/4m2bS5Ipvaw/vWQt3v/G9eApBU8J/uPZ0/j3p19DMKpfRwngcQi4+fI+fGRvn+F2uvWhATz4/LnUxAXQDRrX7u7G7e/tBwA8c2oa9zw1hKGpEOREeJq+Vjdu2teHSzesMVyW0fKqjZn1W4r7Dg7h7ieHEIzKqT5XynMzSkbdEu/c4roZuWa1UQndtxRG9X8tZFtprOY+f83dT+OlEX/W5xf2+PDwzW+qaNlX/v2TOHU+nPX5hhYXfvE3l1e07Eu/8kuM+WNZn3f67Hjms1eUfF9NY4jIKiKSgqikQtVyLxFufXgAvx3Ozunyxt5G3H7N0rovLqs4NhHEwKhuWD88FkDUwFy6q8GBzgY7poJxXe8wPY6p2XPZfBQ7pyOEpMLBpIzrHC1pMV7r97za+n6lU896GVj5urnQXBmAae9aKXPyarzrtV6/pI8nyfVhofGk0PizvdOXs73WNjrw01cnssp4/doGvHB2Pue9AGSV47bzuGJzK87ORXHW4Ng/F5Hwzadfw+NHpyDlsHEQ6JvaAk/g4CjWrnEb0mGV9E4vpd/l+83ejWtw8OR0zn5/eMxfcV1Sr++dRf1jVPdV1Iju9Xrx8ssvo7e3t1JFFMVqN6IDxXnvJJNp5jaA5/YWD8SUvIuuSkEJUiFQFhvAF0KlJL5L/tvOl5XQ6qWzc/ja4ycQkVR47QKERGLDQGInOd3L3CyPqUL3SZcnl4d5Up7kdeG4ArvAgSYSisYSHuufvGpTyoNcZbrhnED3rkv+/ZE396aM7UmZAnEZTU4RW9o9EPlk7HYCjiNgKsNjRyYx7o+iu9GJ39vVmbHb/Mypadzy8GBiF55PyRRJeDjdcc1OQ8rrvoNDuPPR41A1hmSYcgakPCs+/Y7N2N7pwy0PDyIUV9DoFCFyFJKqYS6x02y0rNzlZXpyfPodm6u+sEy2pRn1W4r0+vOcHu9dY4CisorW34hnQTU98ZcDtVgMG9X/K32hXi1WY5+/9aGBlEd2Lq7f01MxY8AN3z6EXx47n/f7K7a04Bt/tmfZlx2TVUQk3aieNASk5hExBYwgoQP1g+kuG2/olN1iVI3h1FQIA6N+DJybx+A5PwIxZcnfcZTo+UkYg8fO41Nv34zXr2sqpaqGMWNOx1OaSmAqFuG1Xqv3PH1ukctz1My5xWqhnvUysLJ1s5G58iW9zWW/a+XMySv5rqevu3KdpK30+1zsus/IeuOGN2V6PfujEv73f7+aVYY/quc5SzrSpY9lySSgqsZyjnP/5z3bwXMUo/NReGxCwbE/fb0tchzCkpIVOz1Jm9eGay7swju2t8PrEAy1IUcJXDYeHjtvyomnJKX0u8W/SbZ9rn6vanrkgeSpgEqsHev1vbNYHhjVfRUNNmjFkK0PGNOTVQQS4VCCcQXBmILRuSiefW060zieNIxH5byDfSWx8zTD6O3LZQBPM5T7HJWPFbYYjTE8cGgEEUnNiGlm4wnWuEVMhyQ8cGgEu3oaUskpN7W7yy43333yyQMsxE1/4NAI+rsaUte1eGwZ13ns+nX3P3sWJ6dCUBkgcgAhNHUVxzRIKvDAc2dx474+2EUOPCXoa3Ev2f7pnvAZsmsM9zw1hFBcQYfPkXEfn4NhIhDHPU8N4ZLe5oJKTFE03P3kEFSNQeRJRow/jmqQFIa7fzWE7Z0ehOIK2r32hdh5lEO7lxouy3B5Tw7hQ5deULEjkYtJb8ty67cU+eqvJ06tbP0pJdjZ7Sv7GovKYun/6rLa+rwkqXjw+XOpv3PFBn/w+XP4wru35w1tUiqxmFLQiA0Avzx2HrGYArvJMb2rXXYypnqTS4SsagjHFDz4fGIe4bXlnW8k5z9G4SjB5nYPNrd78Eev7wZjDGdmIxg858fgqB4CZioYz/qdqrFU4veoLOEzD72KPesbsbO7Abu6fdjY6i7LYSIXZszpFE2DImV6Jya91m08hUB1D0We6ob2pD6vxXueb24BAD5mfJ5mUXssvVzcXLmcd63cOXml3vVC6y5Whfe52HVfMeuNZHtpGsMHv3Uoqww9h5IEVWNQND32e1KHeTUNJ6ZCAIBNbe6MdV1ynLvv6dfwnQ/tASFInbrP5UiZvi5PrrcbnAJkVYM/JmMuImeEYpsMxHHvU8P45m9O4/JNLdi/qwPbOrwF19aqxlL2GpvAwWPn4Rb5sp9ZKf0u/Tfpbb+437d5CI6MB8Gg2xg4av7asV7fO4uVR+0y9liUhMYYgos8wP1RGcHYgme4P+kZnvh3MKbkPEpUSQj0xJEZIVGyPMUF+NKM4z6Hnkyz3jk1GcbITBheu5CxgAR0b2SPXcDITBinJsOmGM/NkueJ41OZ1xH9e5L4b4NTxND5EEJxBTwFuEUZqjnCQYC+iP7V8fO45qKusmU/PBbA0FQIjU4xa7JAiD7pGJoK4fBYoKBSOzAwjmBUTuxqZ/YhSih4TkMgJuPwWAAtHntZZRktLxiVcWBg3JR2MoJZbWmEeqy/hYXF6uHeg8OpY+iL15kL+TcY7j04jI9fudHUsr/0yFHD193+3p0rpmyBoxiZi+LcbBTNLhEix2UkZjZz/kMIwfpmF9Y3u7B/VycA4LenZnDno0ehQc+jI+XIbqpqDL8dnsVvh2cB6I4ZWzu96O/yYWe3D9s6vBmJVusJxhjisor4IqMMIQQ81ZPb8Zz+X5HTje3VMFpXc25hYVFpqtWf6/W9qbVcxZZfynojXxkxWYOUiJcuqRpikgZHYpM9riTzHDHEZQZHWvqkXHK5bTzcNh5xRYU/KiMcV1ObVPnW5QJHscZlg0vkEYjK6G504sh4IJUXSVI0/PzIJH5+ZBK9LS7s7+/ElVtb4bIVNtcl9cYskeC0cfDahZrpuULP15+Wy45UaO1Y6/5tsXqwjOg1xHgyzQVP8Zol01wcIzyXp3jSO9wuwG3nU8eiVhr+mARZY/ByuesncgRBxuCPSXUhj42jCDFgPiJBTSQH5SjJUi5OQjCZMErke3aUACqA0flIzu+LZTYiQVb1mKb5ZPdrDLORwm05Oh+BBoDP0+UoARQGSEr5ZRktz8x2MoJZbWmEeqy/hYXF6uHMbHYs8nKuK4bTBu9p9LrlUjawoGdsPAdKCZJn1VjCmO4AEIqjIvMfnifgOIpWl5gKPRCV9ISoyaSoi4kpGl46O4+Xzs4D0Oc2m9rcKaP6jk6f4ePztYIxBlllkNXs+vGUwiZQ3bCeDA/D0YIejMVSzbmFhUWlqVZ/rtf3ptZyFVt+KeuNfGUompZIPK6H+lQ0DQCX+g5IbsAvfJ5PrtTnPIdWDwfVpScHDUSVpdflPAXlCP700nXoanDgp4Pj+NngBOajcuqa4fNh/OMvT+LfDg7jyq2teHd/Bza2eXI3QgKNMYRiCkIxBQKnJxCvtj2m0PNN12EsGaQ+DTPWjrXu3xarB8uIbgLpyTRzJdL0p/6dFi4lJiMm10cyzbzG8RzJNC0An12EQEliIZndLpKqJxzx2cUcv66sPPqz0j3xaMLLPKZosPMUm9q8sPEUisZyHm+OqxpEjiJGVGhMV2aL0Ziu87oanKbI3uQUISQ8Auw0e9c8rmoQKEGTs3BbdjU4QRPy5ZWbACJfflmGy4N57WQEs9rSCPVYfwsLi9XDuiZjCeuNXlcM65tc+A1mDF23ksoG8usZQgg4Akiq7v29uc2LFo8NUUmPqa6ZEEZi8dyLpxQeO4UnEbYmIqsIRmW8sW8NRuejODYRgLzIW13VGI6OB3F0PJgKB3TBGlfKqL6zy4cWj61sWauFomlQ4tlhYXhKwFECntPbiecIBErBUZIRHsYI1ZxbWFhUmmr153p9b2otV7Hll7LeyFcGT/U1cnJNyFOa8R2Q/Xk+uRbDUf1Ed4NTxITfDZGjhuwEnQ0OfOTNvfizS9fj1yen8ZOBMbycliw9Kqs4MDCOAwPj2NLuwf5dnXjL5pYlPc1lVcNMOI7ZiASnqId7cYqVN/sVer5Cmu0hlwoyY+1Y6/5tsXqwjOgl8uir4/j7n5/ATFiCPyrXJJlm7gSa6cbwBUO5z1F+Ms1SMCupZj2Vt6HNhZ5mF4bPh9DsEiEpDCrTwBEKkScIxmT0trixoc1lqkzp92lwiNjW4YVNpHhDbxM2tHlwfCIIj53Pim83H5GxtcOD/f0deOilczg6HkS7l+a8bnunF4fHAvBHZRCoIISCseTxeA2KCvicAvb3d5TfkAC2d3rR1+ouKNPWDg+2d+qJHfIl/Njf34Ev/uQw/BEZlGgZR/40pkFRGXwOAds7PTg+GTZUVtnlmdhORii2LcuhUvVXFA0HBsYxOh9BV4MT+/s7qhZTvl6wktpYLEeq3W9v3NuLf3riJBSNpXRUkqS9lqcEN+41P7H9567eivsPnTV03UoqG8jUM61ugolAHHFVhY3j0O61pfRMf7cPlOrhXVgieXlEUhCR1Jwe1UZYau4VjivY0ObB3759EyghkBQNxyYCGBz1Y/CcH6+OBVLx09N5bTqM16bD+PErYwCADp8d/d2+lGG9q8GxrBxJFjzXAci5r+ETMdeTHuwip3uz5/JYrObcwsKi0lSrP1f7vSmkg9O/a3AI6G1x49hEEG0egrjCoGiafqqFJxV/n4ttl/T1htF1ab4y7II+1kUkFU6Rg11cWF/YeJKYRxDYhMxxsNjntXt9Iza1e3BkLACHIIKBpEK9MLAsOwGgG5jfuqUVb93SitMzYfzHs2fx26FpRNMcLo9NBHFs4jjueXIIb9vehv39HVjXXHjDnDGGcFxBOK4kNp55uO18hkG7XNLXbh0+By5Y48LxyVDW8/XZeYwCYNCfHciCkTu5dvQ6eFzQ7MRTJ85n9GOjc8zlrK+s9V/x1LLNKmpEX7duHQShvo9Jlkpc0XAykYCiXOw8hWdR8kyfI9tTPN073GnjKmqMNoOXzs7hgUMjGJkJQ9YYBErQ0+zCdXt6cOHaxmVbHiUE1+3pwR2PHMXpmXBGchBCAJ9DwHV7ekAJMUUmnlIMnJvH9549gzMzYSgqg8ARbGjz4KZ9fbh0wxr85Vs24JaHBzERiKPBKcDGUcRVDfOJTNQ37esDz1PctK+v4HU3v2UDDo/58ZWfHYO+1sxc7FIC3Hx5n2mGTUrJkjLdtK8PlBI8c2oa9zw1hKGpEOREG/S1ulNtcPPlfbjz0eOQFAae07Iyft/8lj5s7/QZKgtA+eWZ2E5mt2W58Dw1vf73HRzC3U8OIRiVoQGgAL74k8O4+fK+sjO1LxeW6nPLiZWs/y0yqUW/FUUO1+7uxv2HRgAAuRydr93dbXpSUQCw23lcsaWlYILPK7a0mJ5UtNZlAwt65obvPIcjoYVEn2GomI1IcAg0S88QQuAQOThEDs0A4oqKqKQiLGXH/y5YdhFzLwAQeYr+7gb0dzcAb9C90IfOh1JG9YFz/ozj80nG/TGM+2N47PAkAKDJJWJnl+6lvqvbh/VrXMs+XKGe2BSIIrP9OUrSQsMkjevVm1tYVBZLL1dvrlzNOXkhHQwg67tmtwg1kUhz8Tja5BIr+j4X2y7J9UYx69JCZXCUgqN6XPSYrGWU3eTSvZMnA1JZzyu9/OmwjAanAIEQRBPx050il6Gr0km3G9h4Cp4SaExPZJokFFfw0IujeOjFUezq9mH/rk68acOaJfPKKZqGuYiEuYgEh8jBbePhKjMZaa61m0PkIHA05/NtcArwR2XIKsCQuXZM9r+PPfBiRj/eu3ENDp6cNjTHrOZ7ZyYraf1XLWrdZoSVkKr7ueeeg6ZpeMMb3pDx+e9+9ztwHIfdu3ebJqCZBAIB+Hw++P1+eL3l7UAdPHEef/rNQ1mfe+x83lAp6fHDfWnf2eo0yVE5vHR2Dl97/AQikgqvXYDA6UdwAzFdeXzyqk2mGrZrUd4djxyFP6pn2E7uiicXcrckvMCMypQ8fptcuAhpyaOeHZ7BLQ8PIhRX0OgUIXIUkqphLqEM7rhmJy7dsCZzMEkY7HMNJktd98ypadz8wIuYj8gZ8fcJgAangLuvu8j0wcmITEbaIF2ZJ8OteRxChiHWSDuZWV61MdoPzMCs+t93cAh3PnocqsYSyYMyDfKffsfmFW9IN9rnSsFM3We2/jdTNovqU8l+a4RbHxrAg8+fSyUZBXQP9Gt3d+P29/ZXrNz7Dg7hjkeO5cxRQwDccvWWio1Ztz40kNo8yMX1e3oqWvcbvn1oSSP+N/5sj6F7qRpDRFIQlfS45kud6jQy9zI612OMYWQ2ioFRPwZH/Rg4N4/JQHzJ37lsHHZ0+tCfCP+yud1jqldfPUIJwcC5edz/u7M4Mx2GwhbmFh+7fIO1yC+BetbLZstXj1Rrrlzpcgrp4OSwpGos47vJQBzhuAwQXV8tjKMETS4Rd73vdRV/p4tpl1LXpfnKyDDKLiobgGnPK1f5vS0ufOCSddjS4c3Sd4VsGTwl2NDqxssjfkRzbD43OAS8Y0c73t3fgc4Gh2EZKSElJyMttHajBFjb7ERc1rLa8fCYP2vtaBc5iInTUIv7akRS4LJxaPXYDc8xq7kWLpdaz6OXI/WwZi7JiL5nzx783d/9Hf7wD/8w4/OHHnoId955J373u98VL3EVMHNCMBuW8OKZOagag02gKz6ZZjFojOHTPxrE8PkQ1rjFjMzUDAzTIQm9LW7c+Qc7TfGmr2V5zW4Rkpx2pFggmAlJ6F3jBsAwPB3OkIkQossUlLCp3Y37PrAbNoHLG6NS0xg++K1DODoeQLvXnnUsaSIQx9YOD77zoT1FHXfKd116eW0eG/wxBbKqQeAofHYek0EpozwzMSKTkTYwEhJkqWOPZpdXbap5vKnc+iuKht13/AL+iAyRJ1mhYSRFDw3z/C1X1rxdK0Wxfa5YzNR9Zuv/lb5QX8lUut8aRZJU3HtwGGdmw1jX5MKNe3sr4oGeJGPM4ggUpteXEAKe6PFOKzVmSZKKbbc9lrFpsBieEhy57e0VaYNYTMGW2x5b8rpjt729JG/4mKzHUI9ICqRFiUINzb3KnOtNBWIJg7ofA6N+nJlZOsGZjafY2uHBzi4f+rsbsK3DC0cF+18tyRWekKO6tyTPJeKwp8VgFzhS9TCSy4V61stmy1evVGuuXKlyCulgLeFpDgCb2typuTVjDK9NhxMhTSjafQ7dCEopbALBZKBy67xc8i/VLuWuSwutLY2Evyn3eeW7F2MMobgCf1SGpGiGbRlf2L8VTxw7jwOvjGHofO4E4hevb8T+/k68sa+5KLtUMclIDa3dHAK+9aGLEYgpWe24OATMQy+ew/HJYEY/zuyrHC5ocaXaxcgcczmER6mXefRyol7WzCWd9zxy5AguuuiirM8vvPBCHDlypJRbLjuaXCKu3NaGsfkoYkUcR10NnJoMY2QmDK9dyFACAECgx8gcmQnj1GQYm9rdy7o8CgK7QKAfYNLx2AW8Nh0GoO/8Cxyn7/ADqRe9yS3i7EwEp2ci2Nnty1vW4bEAhqZCaHSKWUZ2QgganAKGpkI4PBbAzkQM0kL3S5LvuvTyKKVoXJR4Y3F5ZmJEJiNtwPMU11zUVVJZlSqv2hjtB2ZQbv0PDIwjGJUTXgyZi21KKHhOQzAq48DAeN21s1kU2+dqiaX/LZLUS78VRQ4fv3Jjxe6/mIwxi1IsTk/Fo3Jj1r0Hh1MG9Fx2YsYARWO49+BwRdrkS48cNXzd7e/dWfT97QIHu8ChySVCUTVEZBWRuO6lfmoitOTcq9y5XqvXjiu8dlyxtQ0A4I/IeviXhGH95FQQi/cv4oqGl0f8iWRwZ0EJsKktaVT3YUeXDz7HygihQQnJatuMGOx5fiPwukE9GXs9eeJyOcWar2csvVwa1ZorV6qcQjo4rrBEqBaGuMzgSCiqmKxBUvVwJpLKEuvkBXNQNeebRtql3HVpvjIKlW3m88p3L0J0+4THLiAmq/jd8KwhW8bYXBzv2dWJ/f0dODYRxP+8MoZfHT+fsen83Ok5PHd6DmvcIq7e2YF37ewwlDA7PRmpS+TgLpCM1NDaLSbj9HQk5zwofe04eM6P16bDWf04s69qiElaaoPayByzmmvhUqmXefRyol7arCQjus1mw+TkJHp7MxM2jY+Pg+etXKWrHX9MgqwxeLnck2ORIwgyBn9MWvblEaInIqGEJIzk+k6uPyoDDHAIXM5dMBtH4dcYZiOFZZqNSJBVBjGPJ4/R+xil2uXVo0z12AYrmdH5CDQAORLYA9DjHaqJ61Yqy6nPWfrfIsly6rdmUssx68xsbs+zUq8rltMG72v0ukLwHIU34RnHGMPJySBUDXn7m9lzPUBPWPemjWvwpo36seCIpODIWEAPAXPOjyPjAchqplVdY8kEcEH88IVzAID1zU7sTCYr7fKh1Ws3TcZ6R2MMcVlFPEeS03SDurBEglOL/Fh6eXVSSAcrmm5U1TdWNQBc6nPGAI4Cqpb5HVB/ens1zDPsAgckQqHYBYrE3kcGi/UbIQRbO7zY2uHFxy7vw2OHJ3HglTGMzEVTv5kOSfjub8/gP549gzf2NeM9uzrx+nWNS57USnrJhwokIzVzHpTvGS+3vloKq6F/m029tFlJmvWqq67CZz/7Wfz4xz+Gz6db+Ofn53HLLbfgqquuMlVAi+WHzy5CoHocL1uO0VVSGQRC4LMv9t+q3/Io0eOV23iK9c0u2BNHtHMl8YgpKkSOgoFBUjXYafax3riqQaAETc7CMjU5RQiJHdhy7mOUapdXjzLVYxusZLoanKDQJ4+51s0a009xdDU4qy1a1VhOfc7S/xZJllO/NZNajlnrmlymXlcs65tc+A1mDF1nJoQQdPgcsAkUIPrcS2O6gVZjDGDmzy1z4RR57F7fhN3rmwAAkqLhxGQwFf7l8Kg/IwFcktOJk4cHXhkHALR77QtG9W4fehodq9IrW1Y1yKqW9XkywWkquSm/8LdFNpZeXp0U0sE81d8VQhb+nfycJAy2i78D6k9vr5Z5RpNTTOk1W+K/qsaQjLpcSL957AL+8PXd+IOLuvDKOT8OvDKGX5+cTp1a0xjwm1Mz+M2pGXT47Hh3fwfesaM9y6s/F7mSkbptvKnzoHzPeLn11VJYLf3bTOqlzUoyov/93/899u7di3Xr1uHCCy8EALz88stoa2vD9773PVMFtFh+bGhzoafZlTeuVzAmo7fFjQ1t+iIrV4zFYuJZml1eusFc/y+XYSxvdIrY0ObB0fEg7AKXFYtpPiJjS7sHAMOxiRDavTTnNVs7PNjeqcdayhe3a3unF32tbhwdD5Z1n8Xki2NdbHlGKDcmWbpMbV6CuMygaFoqfl8pMhWK412PbbCS2d/fgS/+5DD8ERmUaFlx9ZREfOH9/R01lLKyVKKPVwpL/1skWU791kxqOWbduLcX//TESSha8qh+NjwluHFvb+4vy+RzV2/F/YfOGrrObNL7W6tbwHRYhpRYLDW7BIRiCvpaXam5XjUQeYodXXrIluugGz2Gz4f08C8Jb/W5SLYL9kQghokjMTx+ZBIA0OgUsDNhUN/Z5UNfi3tVe2OrGoOqqVnhMgkhmWFh0sLEVHITot7ncJZeLo16f65LUWi9YuNJIuQXgU1Y+Nwu6BtTyTjTyXVyut7e0u6BxhieOnG+5u1SiTUZUJ2458WQWU8bOKrnmFA1fV612JaRC0IIXtfTgNf1NGA2LOHRVyfwk4ExTKQlzB73x3Dfr1/Dt35zGm/euAbv2dWJ/m6fofEzKqmISipmQhLe2NsEt51HIKqAEg0ASSWoBdiS86D0NmtwCOhtcePYROZckiMko6/axYW5lpFnX8pzqfaYUKn+bTb1NFbWS5uVZETv6urCwMAA7r//frzyyitwOBz40Ic+hD/5kz+BIKyMuH8WpUMJwXV7evC1x09gOiTBYxcgJmKvBWMynCKH6/b0gBKCl87O4YFDIxiZCaeyJ/c0u3Ddnh5cuLax8uVxBOvXuHDDZRfgTRtbIPJLe7pQSnDTvj7c8vAgJgJxNDgF2DiKuKphPpEV+GOX6xm+C11z074+UEoyM0irukzpGaSXKsvofZLcd3AolRVbgx5R9Is/OYybL+/DR/b2GS7PCEZlMtLen/jByzgxGQJjLCOTfLNLLEqmpepv5PlWuw1WMjxPcfPlfbjz0eOQFAae0zIyvHOU4ObL+1ZsUlHA/D5eSSz9b5FkOfVbM6nlmCWKHK7d3Y37D43kveba3d0VS6xqt/O4YksLfnnsfN5rrtjSUlJS0aVI9re/+N7zODIRz/jufEiC28bhE1duwtomF6KyvtiPyaruqV4lOEqwsc2DjW0evPeibjDGcG4umhFXfdwfy/rdXETGwZPTOHhyGgDgEjls7/Siv7sBO7t82NzuyXnycbXBGIOksKyks0Du0DAiR8sef5bDHM7Sy8WzHJ7rUiy1Xmly6Z6YkwEp4zuOUlCiIqaoODMTztDbbhsPf1TCTf/xQl20i9lrMsDcZ2/WvfLVU0rU02vnccNl68FRmvJOL0STS8TWDg9ePOtAVFIRkdWM0GOKxvCr4+fxq+Pnsa7JiXfv6sDbtrXBY196vNAYQ0RW8ScXr8W/HRxGXGFYHH+GI8g7D8rVZs1uEaqmZc0lGXRPd54jiMma4WdfynOpxZhQif5tNvU2VtZLmxFm5E1cIVQi07iVWDQ/GQZrph9DSjeQv3R2Dl97/AQikgqvXYDA6SFZAgnD9yev2mTYkL5UeReta8LAyDz+38+PIyIpaHSKsHEUssYwl3jh7rhmZ1GDQcagktgAWDyoLHXNM6emccvDgwjFdZnEhMJcLJNZ97nv4BDufPS4nomdI1kL/0+/YzM+srfPUN2MtI8RmYze6xM/eBmzYSnD+44QfaJw1/teZ+heRutv9PlWsw1WOumbGwz6MUCPQ0htbqx0zOrjuaiE7jOLepbNYmkq2W/rnVqNWTd8+9CSRuxv/NmeipV/60MDBY341+/pwe3v7a+LshljiMoqwnEVEUmBujgraA04H4ynDOqDo/5EIvrCCJwe/zaZrHR7pzdvwjeLTHhKEw4yxcddr+Qcrt51X73LVw4rbW5eaL0CIOu7ZreIc3NRhOJKht5m0MdMj51Hq8deV+1ixposeR8z16Zm96Ol6qmoGoIxBYGYXFCf5bKxRCUVM2EJkqplJcgG9JNVb9ncgvfs6sSWds+S3ukvnZ3DFw8cQSCmZH3X6BRw93UXZdU/X5tNBWMIxhR9MyctogAhgNvGo7vRgZmQZOjZl/Jcaj0mmNW/KyFXvY6VlWozo7qvZCP69773Pfzrv/4rhoeH8dvf/hbr1q3DXXfdhd7eXvze7/1eyYJXEsuIXn3yhU7RGMOnfzSYNwTLdEhCb4sbd/7BzqJCu2iMYfh8GGFJRYvbhp1dXthFDjwh+LNvP4ej4wG0e+1ZRz8mAnFs7fDgOx/aU9TOlZHjLfmu0TSGD37rkGGZyr3PNz6wG3u++kv4IzJEnmQdQZcU/ejV87dcCZ6nZR3dKbZuRu/V5rEhrqSFDOAJJoOSoXspiobdd/zCcP0LPbtqt8FqoVCYnZWMWX08H2brPjP1/0peqK90Kt1vlwPVHrNiMQVbbntsyeuO3fb2iniDS5KKbbc9loq1mgueEhy57e2me8MvLju9RyWlWarsmKwiGFPqxqAOAP6ojFfTPNVPTAZzGjjSoQTY2OrBzm4vdnY1oL/LB5/T8jguBo4S8ByFkAibwCe82Hmq/5cxVHQOV896uRLy1QsrdW5eaL2yOHTG/3vsmB46I01vc4Rg3B9FVNbgFDlc0OJKrc3rpV3KDSlRqbWp2f3ISD0ZYwjGFQSictbJnKVsLOeDcTS7bWh0inj+zFxOGTa0uLF/Vweu2Nqac8M2vYwmp4BQXE3N/zw2DrNRBVvbPfjeDW/I6Ie52oyB4bXzYUQkFQ6BosPngMpYxlxyS7sbn3r7FsxH5YLPvpTnUi9jQj2FTEnKUw/tspSMZreZUd1X0gz7nnvuwec//3n89V//Nb785S9DVXUjcmNjI/7hH/6hbo3oFtWHEoJN7e6sz09NhjEyE4bXLmQM7oC+A+mxCxiZCePUZDjn75MkPUyS8ctFnmJDqyfrusFzfgxNhdDoFLN2VgkhaHAKGJoK4fBYADu7fcbrR8mS1+e75vBYoCiZyr3PvQeHEYzKCQ/szEU+JRQ8pyEYlXFgYBzXXNRlqG75KLZuRu9FKYVDBNKzcxu914GB8aLqDxh7vkbkNrPPrWR4nqbafjVhVh+vBpb+t0iynPptpaj2mPWlR44avu729+40vfx7Dw4vGLFzrFMY04+J33twGB+/cmPVyiYGy7YLHOwCB8ZERCQVobiCqFTdkC+L8TkEXLZhDS5LeE5FZRVHxwKpZKVHxwOIZxlJgOOTQRyfDOK/XhgFAKxrcurJShMJS1u99qrXZTmRjLsez/P9qakQjk8E4bHxUDUGQvTNC0JI3c3hLL1snJU6Ny+0Xkn/bvCcH8Pnw1l6OyqpkBOndCVVQ0zS4EhsRtZLu5SzJgMqtzY1ux8ZqSchBF67AK9dQExWEYjJCMdVsITzYiEbi9chIhiV8am3bcFfXcnhpwPj+NmrE/BHF/J3nDofwl2/OIl7nxrGldta8Z7+TvS1Lthj0svgKIXPkbmudtt4nJwM4lfHp3DxBU1wiTyO5GmzmKRBUjXwHIGsMRBC4LEtmCgbnAKGz4dBCcG+TS0F26WU51IvY0K5/dts6qVdClHLNivJiP7P//zPuO+++/D7v//7+OpXv5r6fPfu3fjbv/1b04SzWLn4Y/qRHC+Xe7dI5AiCjMEfk1KfpRvMbYnEKPwS8cuTzEYkyCqDmOd6G0fh1xhmI1LO7yuBWTIZvc+Z2TA0AHyeDTpKABXA6HykiFqUJ5OR9jbrXqPzkarVH6jPPmdRnyynvmLpf4sky6nfrhROzy4d+qOY64rljMH7Gr2uVmUTQuCy8XDZ+FTIl0giaZqsZsfbriYOgcNF6xpx0To9nKGsajgxGcRgwqg+OOpHOJ59AvbMbARnZiP4ycA4AKDNa0uFf+nvakBPk6OiyTdXGnMRCbKqgaN84tQCy4hLX0/jm6WXjbPa9Va++iuaBsYAjgKqpv+dvim+EtqlHtemZpDcHFZdDKGYgpA0b9jGsqm9CX+xtxd/dul6PH1qGv/zyhgGzvlT10ZlFQdeGceBV8axrcOL9+zqwL5NLYbtONOhOKaDcUwjjlPnQ4grGhocmb8xs++V8lzq6VnWE1a7FKYkI/prr72Wyv6djs1mQzhcmYm7xcrCZxchUD0Gui2HVVPWGERK0d3gRLvPXpTBPBdNThFCYnfdTrOP+cZVDQIlaHKKJZdRK5mM3mddkwsUugdTrpMuGtO9uboanCXWqHiZjLS3WffqanBWrf5mym2x8llOfcXS/xZJllO/XSmsb3LhN5gxdF0lWGfwvkavq4eyCSFwinzqyHpM1j3Uw/H6CPkicBTbO33Y3unDH0P3oD49HdYN6gnD+mw4exE7GYhjMjCFXxydAgA0OATs6PJhZ7cPu7p96GtxG4oLvlpZap1ST+ObpZeNs9r1Vr7685SCJPJEEaL/nc5KaJd6XJuaCUcJfE4Bm9s8sPEUisYg5jByS6qeN85nX5BN5CneuqUVb93SitMzYfzklXE8dmQiY8P2yHgAR8YDuPvJIexZ3wQC5B0fc5Xh4DlwBAhLKuyCLi8l5va9Up5LPT7LesBql8KUZJW84IIL8PLLL2d9/rOf/Qzbtm0rVyaLVcCGNhd6ml0IxPSjQ5QScByBkIhJGI6r2NTuwRv7muEU+bIM6ACwvdOLvlY35iJyVlZrxhjmIzL6Wt3Y3lm9uH9myWT0Pjfu7YXHIUBRGTS2+GiwBkVl8DgE7O/vqJu6mXmv/f0dVau/mXJbrHyWU1+x9L9FkuXUb1cKn7t6q6nXFcuNe3vB02Sc3Mzvkn/zlODGvb3Ltmy7wGGN24Z1zS60++xw2/micvNUGi6RPOuaC7vw+f3b8MOPXoLv/fkefOrtm/H27W3o8OUO4zIflfH0qWnc8+QQbvyPF/Gef/kN/u6/BvAfz57BK+fms+LqrnbS1ykM9T2+WXrZOKtdb+Wrvz1xwltJeJ7axYV190ppl3pcm1aC7Z1ebGzzIBRX9RCmlKSSiDAwBGMyeppd2NCWe8N5fbMLf/nWDfjhR9+IT71tE7a0Z4bJDcYU/PLYFGYjMkbno/oYmdYG+cpIH1P1dbcGSdHAcUhtWIochV0ove+V8lzq+VnWEqtdClOSZfJTn/oUbr75Zjz44INgjOHQoUO4/fbbccstt+BTn/qU2TJarBAoIbALHDx2AS0eO/7XWzbAa+cxG5GhaAwUBHFVw2RQgtvG4aZ9faYlKqCU4KZ9fXDbOEwE4ojKKjRNP8I7EYibXl7xMsUwGYhhMhDFZCCGiUAsSyZNYxg858dTJ85j8JwfWsJDymjdRJHDzZf3gaMEUiKRjMY0KJqeVJOjBDdf3mdKUjQz29use/E8zai/rKpQVA2yqppe/2y5Y5iPSPBHJcxHpJzP12L1spz6iqX/LZKk99txfxRTgRgmEv8d90frqt+uFOx2HldsKRwT9IotLRVJKgoAosjh2t3dqb8ZW/hfkmt3d5ueVLRWZTtFHq0eO9Y1O9HqtcNl42saEkVjDCcmQnju9CxOTISgMT1+bFejA+/c0Y5Pv2ML7v/wG/CDj16Cz71rK37vdZ3oXeNCLomjsornz8zhm785jU88+Ar2/8vT+Kvvv4R///UwDr02i3BcqXr96glKCK7b0wOnyGE6JCGmaDVfN+TD0svGqcf1YDXJ1NsxzEUkBKIy5qMyuFSSXYKYXL/9vVSMPnsAOdfbpdzLzPbKZwcoJNtUUIKiMfBEjzc+HZLhFDlct6dnyc1hu8DhnTs78PXrL8K9778I7+7vyDBwA3oekolAHEPTYZwPxhGKK5gObMPNbgAAqjxJREFUSTnLyDmmMoaopOnOlImcE5EK2ww+urcXh8cCqXYEUNU1mNHnWGtW+1i5FIQt3lowyH333Ycvf/nLGBkZAQB0dXXhtttuww033GCqgGZSiUzjY/NRxOTs2ISrGY4mPcr1XW2BJ3nDsTxzahr3PDWEoakQZI1BSHjY3LSvD5cmkiyZSbXLM8KtDw3gwefPpRJmAbo31bW7u3H7e/uz5VYZBC5bbqN1u+/gEO5+cgjBqAwGfXPa4xBw8+V9+MjePlPrZmZ7m3UvI+1tJtVsb4vlTaX6itm6z0z9Xwm9bFFdqj2mWgDX3P00XhrxZ31+YY8PD9/8poqXX8tnXuu6axpDRFYRiSuIVDEp6Utn5/DAoRGMzIRTc6CeZheu29ODC9c2FvxtMCbj1dEABkf9GDg3j+OToSVD1VAC9La4U4lKd3b70LgKj22nt7sGQOSoKeuGetbLlZCv3qjH9WA1SZ9vatC9Kj0OAe/a0Y6zc9EV3S6Fnj2AJdfbRu9lZnsZsQMYle1Dl67H1k4volLx9qtwXMEvjk7hwCtjGJ7OHSrKa+fxB6/vwnV71uUMGZahy5ge9qWn2YWL1zXiuTNzGJkJQ2G6d/qGVjdufssG02wGezeuwcGT0znb8fCYv+Lr9VKeY61ZbWOlUd1XshE9yfT0NDRNQ2trazm3qQqWEd18BE5P9ilyC0k/iw29omkMh8cCmI1IaHKK2N7preiuVrXLK8R9B4dw56PH9V1iqg/YDICi6QvST79jM7Z3+nDLw4MIxRU0OkWIHIWkapiLyHDbONxxzc7UIGa0boqi4cDAOEbnI+hqcGJ/f4dpHtiLMbO9y73XM6emccvDgwjGZPCUQmMMlBAomgaPXchoSzNIL88p6kfCNcYQkVR47Lzp5VksXyrZVyq1GDZD/6/0hfpKJ6nDVI2BowABAQODqukb6p9+x2Zrs9BkkmNFICJBYXoSLp5S8BTwOsSq6RVJUnHvwWGcmQ1jXZMLN+7trYgHejrpc6b0GYuGhTlTNfsbYwwxWUNYUiqalPSls3P42uMnEJFUeO0CBE4/+h6I6V6Fn7xq05KG9HRisoqj4wEMnNMTlR4ZCyBmIJxLT6MDO7t96O9uQH+XD21e26pIVqoxhlOTYQgCQavbbsq6oZ71MrA6dHM9rQerSVKHhOIKHAIHQvQTPVFZhdvG48u/vwM+h7ii2yXXs392eMbwenupe5nZXunPqxi5lpItrqjwR2WE42pWuI6lYIzhyHgAB14Zx6+OT0FWs3/f4rbhXf3teOeODrR4bJlyJcZUf0yCzy5iQ5srte5Z/LmN5xKJwDnYeONzjMV190cl/O//fjVnOyZNV4qqVWy9Xs5zrDWraaysqBH9c5/7HG677TZwXGZH9vv9uPHGG/Gf//mfxUtcBSwjeulQQiAsMpaLHF2xL1A1UBQNu+/4BfwRGSJPQMnCklBjeogVr4PHjk4fjk8G0e61ZyxWGNOPUG3t8OA7H9pjPYsl0DSGD37rEI6OB6rSltUuz2L5Uum+YqbuM1v/r4aF+krFiA7zOQU8f8uVFdukXW2sZr2yHPqbpGiISApCccW0GOMaY/j0jwYxfD6ENW4RJC04CwPDdEhCb4sbd/7BzpJjtyuqhpNTIQyc82PgnB+vjvkRjC0dzqXVY8POhJd6f7cP65qcK9qo3tPkhFBmjqYk9ayXzZbPon5YzTqkEPXaLtWQS9X0GOaBqAJFK15v+aMyfn5kEgdeGcO5uWjW95QAl/atwf5dHXj9usaycowIHIXbxsNl4yEWoecLtaPGNJyYDAEANrW6QWlmTHYz2rhe+5dFNkZ1X0kzge9+97u47LLLMDQ0lPrsySefxM6dO3H69OlSbmlRRwgchcvGo9Epos1rR0+TE+vXuNDV4ECLxwafQ4Bd4KyXvEwODIwjGJX1pB8k81WkhILnCIJRBYfHA2h0ilkLE0IIGpwChqZCODwWqKboy5LDYwEMTYWq1pbVLs9i+bKc+oql/y2SGNNhMg4MjNdIwpXHchorzGY59DeRp2hwiuhudKK70YlGp1i20fXUZBgjM2F47UKGAR3QT3547AJGZsI4NZn7aL0ReI5ia4cX117cg9uv2YGHP3YpvvHB3firKzbgLZtb0OzOHcZlKhjHL49N4R9+cRJ//u3ncc3Xn8Hnfvwqfvj8CI5NBJYMGWNhDpZetjDKatYhhajXdqmGXBwlaHCK6GlyoNVrh10o7kSZzyHgj17fje986GL8/R/1Y9+mlowwLhoDnj41jU//aBAf+MYhfP/QWcxHpJJklVUNcxEJ5+YiGJmNYC4sGdqwLtSOcZmBMQbGgLiSqbPMauN67V8WpVNS5qGBgQF89KMfxete9zp87Wtfw4kTJ/CP//iP+MxnPoMvfOELZstoUSEIIRA4onuWcxxsguVdXk1G5yP6EeQ8zU0JoACQFQ1inkWYjaPwawyzJSqj1cRsREpl/s6F2W1Z7fIsli/Lqa9Y+t8iiREdpiauszCH5TRWmM1y628iTyHyIhpdIuKKinBcRTiuFB3yxR+TIGsMXi53xUWOIMgY/DHznjklBBesceGCNS783uu6wBjDuD+WiKmu/290PtvjMBBT8JtTM/jNqRkAgEPgsK3Ti/4u3VN9S7sHtiINNBZLY+llC6OsZh1SiHptl2rKRQiB28bDbeMRV1QEovqpKqNBKwghuHBtIy5c24jZsIRHX53AgYExTAbiqWvG/TH8269fw7eeOY03b2zB/l0d6O/ylXSCKWlQn4tIEPkFD/VcG9eF2lHRNDAGEIKEJ36mjjKjjeu1f1mUTklGdJ/Ph+9///u49dZb8dGPfhQ8z+NnP/sZrrjiCrPlszAJjpKM2OXJf6/kY5f1TleDExT6Dm2ufQuN6THSBV6PmWWn2QuPuKpBoARNqzDZU7E0OUUIHKlaW1a7PIvly3LqK5b+t0hiVId1NTirLdqKZTmNFWaznPubjddjuTa5RMRk3ZgejquGjs777CIEqsdAt+XYQZBUPTGbz165Z04IQWeDA50NDrx9ezsAYDYspWKqD5ybx/D5MBabWqKyihfOzOGFM3MA9Lj1m9s92Jkwqu/o9MFtL2kpapGGpZctjLKadUgh6rVdaiWXjefQ4tF1ViimIBCTi9oAbnKJuO4Na3HtxT147vQsfjIwjmeHZ5A8nCSrDE8cm8ITx6awrsmJ/bs68LZt7SXrA0nRMKtImA3rBnWPTYDLxqXy9BVqR55SJM1hPM02cpvRxvXavyxKp+SZyz//8z/jrrvuwp/8yZ/ghRdewMc//nE88MAD2LVrl5nyWRRJ0lgucPr/RI5C4EjRyT5XO9VIoLC/vwNf/Mlh+CMyKNGy4nsqqh4TfXuHF8cnQ2j30qwYWvMRGVs7PNje6S1K7npMEGFEpnKu2d7pRV+rG0fHg4basly5iy2vHp+JRXWoVN+sFJb+twCM6TCfU8D+/o4aSllZqj1u19NYEYsp+NIjR3F6Noz1TS587uqtsFfQIFov/a3chKp2gYNd4NDs1hN8huIKwnElb+iTDW0u9DS78sZED8Zk9La4saHNVXbdiqHJJeLyzS24fHMLACAUU/Dq2IKn+onJIJRFdVIS78vhsQC+/9wICIDeFhf6uxtShvUml2VEKAVLL9cv9TS/T9chbR6CuMJSyaltPKmqDqlGu+QrY/HnW9s9VV0jGqXWOp+jBD6nAJ9TQERS4I/KiErGcwFylOCS3mZc0tuMqUAMjwxO4KeD45gJL3hcn5mN4F9+NYT7fv0a3rK5Fft3dWBLu6dkR09J0TCjxDETBhwiB7eNL/h8bQJJ/b14o9qsZ9/gENDb4sKxCWP2nFpQT+PUcqCk2e473/lOHDp0CN/97nfxh3/4h4hGo/jkJz+JSy65BF/84hfxd3/3d2bLabEIjhLdSJ7mVS5wNCMGlUVpPHNqGvc8NYShqRBklUHgCPpa3bhpX5+pWZN5nuLmy/tw56PHISkMPKeBEt2bSlEZOErwl2/ZgO2dPtzy8CAmAnE0OAXYOIq4qmE+kc35pn19oJQYlrta9SsGIzKZcc1N+/oMtaVZchstrx6fiUX1oJSY3jcrhaX/LZIY0WE3X963YpOK1mLcrpex4oZvH8Ivj51P/f0bzOD+Q2dxxZYWfOPP9lSkzHrob7c+NIAHnz+XYRz+pydO4trd3bj9vf1F3y9pUF/jtiEq6Qb1iJRpUKeE4Lo9Pfja4ycwHZLgsQsQOQJJ1Q3oTpHDdXt6ykrWZgZuO58ylgD6BsGxiSAGz+me6ofHA4jJmZ6MDMDQ+TCGzofx8EujAIDuRkfKoL6zy4cOn906NbsEll6uX+ptfp/UIZ/4wcs4MRVCeqQOQvTNsWrokGq0S74y9m5cg4Mnp3N+PjIbqdoa0Qj1ovMBwCnycIo8JEVDICYjFFOgGQz1AgCtXjv+7LL1eP8la/HM8AwOvDKeOqUEAHFFw6OHJ/Do4QlsaHXjPbs6cMWWNjiK2KReTFRSEZVUEELwxxf34M5Hj2HcH0OjS8xox2aXCAZgMihV7Nk3u0VwFDV/jkbltewQhSHMaKCjNK666ip85zvfQWdnZ8bnP/3pT/HhD38Y4+P1mUSqEpnGx+ajiMnGd+SKJRW3fJHB3PIsrwzPnJrGLQ8PIhRX0OgUIXJ6KJW5xAB3xzU7TR9M7js4hLufHEIwKoNBP47scQi4+fI+fGRvX0qu1OCmMQg0c3AzKnct6rcURmQCYMo1yTYo1JZmym2kvHp8Jha1way+uRgzdZ/Z+r8SetmiuhjRYSuNWo/blRorjLDYgL6YShrSgdr1t1sfGsD9h0byfn/9np6SDOmLYYwhkjKoq6l4tC+dncMDh0YwMhOGzPQQLj3NLly3pwcXrm0su9xKo6gaTp0PJYzqehiYQExZ8nfNbjEVU72/uwHrmp012zDoaXKWnSg2ST3rZbPlW63UWk8UkusTP3gZs2EplVCREN3m0OQScdf7Xldx/VXpdslXxlQwhnBchVPk0Oa1Z5V9/RvWLhjYq7BGLOZ+tdL5+dA0hmBcQSBaXKiXdEbnovjJwBh+9upETn3gFDlctbUN+3d1oLfFXa7IeOnsHP7z0AhGZiNQmR6jPNmOACpuH+Ao0OqxYSYk1c1zrNdxqlYY1X0lGdEB4Ne//jX+9V//FUNDQ/iv//ovdHV14Xvf+x7Wr1+PN7/5zSULXknq3YjO0zRDOU9TxnPLA6M6aBrDB791CEfHA2j32rOO2kwE4tja4cF3PrTH9J1CRdFwYGAco/MRdDU4sb+/I8ubqtCRNCNyf+uDF+ND33muJvXLhxHZt7S7ARAcmyjvmvS6lXtkqdi+Uu6zq+YzsagtlThOZ7buM1P/Wwv1lYERHbZSqJdxuxZHb2MxBVtue2zJ647d9vaKhnapdn+TJBXbbnss5YGePi1PrqJ4SnDktrcXFdplKVSNIRRXEIzJkBQNGmM4NRmGPybBZxexoc1Vcw/0UtEYw9nZiG5QTxjWz4fiS/7OY+exozNpVPdhY6u7ao5F9WpEB8xfl1u6uTzqRU8UkqvNa0NcTgvnIhBMBqSKylWNdslXBgPDa+fDiEi6Ef2CNa6F7xatl49OBKu2RizmvvUabiMiKQhE9ZNUpSApGn598jz+55UxDI4Gcl6zvdOL/bs6cfmmFohl6Pt0PdrssuGitQ3wOgTwHK2KfWBLuwefevtmzEflmj/Heh2naolR3VfSDPdHP/oRPvCBD+D666/HSy+9hHhcn/QEg0F85StfqVsjer1ACYGQluTTlvj3aumc9crhsQCGpkJodIpZGxeEEDQ4BQxNhXB4LICd3T5Ty+Z5imsu6ip4DaUkZ7lG5T4wMF6z+uXDiOzHJoIgIGVfk163fG1pptxGyqtln7OoT8rtm5XG0v8WuTCiw1YK9TJu12Ks+NIjRw1fd/t7d1ZMjmr3t3sPDuc0oCf/ZkyP933vwWF8/MqNppXLUQKfQ4DPISCuqAjFFGztpHnjpy8nKCFY3+zC+mYX3rOrE4wxTAbiGEgkKh0858fIXDTrd8GYgt8Oz+C3wzMAADtPsa3TmwoBs7XDC7tg3kbGcsDSy/VHveiJQnJRQuEQAWDhfam0XNVol3xlxCQNkqqBTyR4jMlaKlRIetlHJ4JVXSMapZ7XB+mhXvxRGaG4gmL8dEWe4oqtbbhiaxtemw7jwCtjePzIJMJp8deT+TS+/qtTePv2dry7vwM9TcUnEqeEYFP7glf7fFTGfFSGQ+TgsvHY1uktOTyykWc/fD4ESgj2bWopqQwzqddxajlQkhH9y1/+Mu6991786Z/+Kb7//e+nPr/00kvxf/7P/zFNuJWAwOlG8vT45WZ5MViYy2xEgqzqR3tyYeMo/BrDbETK+X2tMCr36Hyk7upnRHZZZQDKv8bMupnVV5Zrn7NYvVj632K1s5rH7dOzYVOvWy6cMVgfo9eVgo3nYHNzaHKJiMoqgrHMcC/LHUII2n12tPvseNu2NgDAbFjCq6OJZKWjfgyfD2Hx/kFM0fDi2Xm8eHYegH4iYFObJxVTfUeXFx67UOXaVBdLL9cf9aonai1XNcrPV4aiaWAM4Cigavrf6RsIZtW91m1cS0SeosVjQ5NLRDAmIxBVEu1snAvWuPDxKzbiI3t78atjUzjwyjiOTwZT3wdiCn74wjn88IVzuHBtA96zqxOX9TWXfSIpGT99hkhwCBxcNg4ukS/KyXW5PfvlJm89UZIR/fjx49i7d2/W516vF/Pz8+XKtCzhKEnFK08aym28FYplOdHkFCEkdqftNNuLJa5qEChBk1OsgXT5MSp3V4Oz7upnSHaOgMCEa0ysm1l9Zbn2OYvVi6X/LVY7q3ncXt/kwm8wY+i6lcQ6g/Uxel05EEJSXn/JcC/huFLR/Ey1osklYu+mFuxNeOyF4gqOjAUwcG4eA+f8OD4ZTDhRLKBoDEfGAzgyHsD3nxsBAXBBiws7u3zYlTCsN7ttNahN5bD0cv1Rr3qi1nJVo/x8ZfCUgiSSUROi/2122YXKN7uceoajBA1OET6HgFBcgT+qhyQrBofA4eqdHbh6ZweOTwRxYGAMTxydQiztPi+dncdLZ+fR5BLxzh3teFd/B9q99rJk1/OS6KFppos0qC+3Z7/c5K0nSjKid3R04NSpU1i/fn3G508//TR6e3vNkGvZ0OwWwVNa8rGPalPP8bSWotKyb+/0oq/VjaPjQbR7MzdAGGOYj8jY2uHB9s76ig1oVO79/R146KVzODoeRJuXZMXBK6V+5T6TdNnzybSl3QM93nkQbR6CuJJ2DZ99jZnPLl/90uVu9QCBqApZ1SBwFF4HZ7i8Uvrccn6HLZY/lv7Pj/Vurg4y9JaHwB9TUuO/z85Xba5Qizj0n7t6K+4/dNbQdSuJG/f24p+eOAlFW0jClyQ9JvqNe6s7BqaHe1E1hrCkIBJXEZUr46Fe65jsbhuPPRc0Yc8FTQD0OLpHJwKpmOqHxwKILtpMYACGz4cxfD6MH788BgDobLDr4V+69GSlnQ32Ze30tBL1cjX0aSXLMDK/39LugcYYnjpxvuzyjdal1mtdo+u+ctolXx3tou7smIyJbhcW9KWZda9UG5vZX6s1XyWEwGMX4LELiMkq/FEZ4XjxcdM3t3uwuX0zbtzXh8ePTOLAK2M4PRNJfT8blnD/787igd+dxRt6m7C/vxN7Lmgq2j6XS8dFJGbYoG6kf9eTLanW48FypiQj+kc/+lH81V/9Fb75zW+CEIKxsTH89re/xd/+7d/i85//vNky1jU2fvnE3cvI7KwyCFztMwIbpRqyU0pw074+3PLwICYCcTQ4Bdg4iriqYT6RofimfX11ZxQxKjfPU9y0rw+f+MHLODEZysrI3uwSi6qfGc8kKXshmT52+QYA0K+ZCiF9XUiI7qmUvMbMZ7dU/W7a14ebH3gRR8dDSF+qknk9pqCR8ortc8v5HbZYGVj6PzfWu7l6SI7bNz/wIo6MBzPG/1EYH//L4b6DQ7j7ySEEozI0ABTAF39yGDdf3oeP7O2rWLl2O48rtrTgl8fO573mii0tFU0qWgtEkcO1u7tx/6ERAEAu+/S1u7tNTSpaLBwl8NoFeO1CwpNORVhSEJVUU2Kov3R2Dg8cGsHITBiyxiBQgp5mF67b04ML1zaaUIPiEXmKXd0N2NXdAEBPxHpqKpSKq/7qaAD+qJz1u7H5GMbmY3js8CQAfR7Z3+XDzm7dsH5By/JK2LrS9HI19Gmly1hqfs9TwB+VcNN/vFB2+cXUpdZr3aXWfW4bX3a7FKojzxFwlICjFDFFq0jdK9HGZvbXWs1X7QIHu8BBVjUEojKCMQVakZu9bhuPay7swu+/rhOHxwL4n1fG8NSJ86kTSQzAs8OzeHZ4Fq0eG97V34Grd7QbOn20lI5b7KHuTMRQd4lcyvhsxK5RT7akWo8HyxnCSnRVuPXWW3HXXXchFosBAGw2G/72b/8WX/rSl0wV0ExWc6bxZ05N45aHBxGKK2h0ihA5CknVMJd4Qe64ZmfdLvSrLXuGckkMosvBGGJE7mdOTeMTP3gZs2EppzH6rve9zlAdzXwmRmQCkHZNpkJKl9usZ2ekfofH/Pjqz45BzTGCcgT4zDu3GDZmGH12y/UdtqgtZus+M/X/StDL1ru5+rjv4BC+8rNjWfGZAYAS4LNFjP+llH3no8ehagw8R0ATx9MVlYGjBJ9+x+aKGtJv+PahJY3o3/izPRUrv5bc+tAAHnz+XCrJKKB7oF+7uxu3v7e/hpIVJiarCMf1GOqyWtyRekA3Lnzt8ROISCq8dgECRyCrDIGYDKfI4ZNXbaqZIb0QjDGcnY1gMBlX/ZwfU8H4kr9z23js6PKmDOub2jwQOIqeJqdpea3qWS9XQj6jVEOfVlNn55rfN7tFTAXjUDVmyhqqlLrUcq2bb93HoK/v3DYebV572c8lXx33blyDgyenK173aq5JK91fKoGqMQRjMvxRuayNXn9ExmNHJnDglXGMzmcno+YowWV9zdi/qxMXrm3IuUFajo7jqB5izWPnYRc402wt1WS52r4qgVHdV7IRHQAikQiOHDkCTdOwbds2uN3upX9UQ1bCYr0UNI3hg986hKPjAbR77VlHNSYCcWzt8OA7H9pTdztNtZJ9uR7LLyR3elu2eWxZYVEmg5KhtjTzmRiRaUu7G3qolgDavLaso1GTgUy5y312Ruq3uc2Nw2O6h5PIEwAk7Yg3g6Qw+JwCnr/lSsPH640+u+X2DlvUnkroPrP0/3LXy9a7ufpQFA277/gF/BEZAgcQQlPjP2MaZBVFj/+llC3yBJQs3F9jWkm6pxhiMQVbbntsyeuO3fb2FeeNnkSSVNx7cBhnZsNY1+TCjXt7a+qBXixxRUU4rhvVjRjUNcbw6R8NYvh8CGvcIgjSxjgwTIck9La4cecf7FwW3tsTgRgGz/kxOOrH4Dk/zsxGlvyNjafY2uHFmzaswSW9zbhsQ3PZ4V/qWS9XSr6lqIY+rYXOTp/fNzgE/L/HjiXCT5q3hirlXrVY6+Zb93GUYHw+iqiswSlyuGCNK1Wfcp5LvjpWq+7VWJNWq79UCsYYAjEFgahc0iZvEo0xvHx2Hv/zyhh+MzST0zDf1eDAu/s78I7t7fA5hdTvzNJxPCX4ux8N4OSk/n6XamupBcvV9mU2RnVfWTNcp9OJ3bt3l3MLiypweCyAoakQGp1i1qSPEIIGp4ChqRAOjwWws9tXIylzUyvZKSV11xZGKCR3eltSSuEQgfSs5Ebb0sxnYkSmYxNBEBD9GrK03OU+OyP1OzwWQCAmJ7wAE4aK1KUEPKchGJVxYGAc11zUZahco89uub3DFisTS//rWO/m6uPAwDiCUTlxLHzR+E84MBQ//pdSdroBHQAooSXpnmL40iNHDV93+3t3ml5+PSCKHD5+5cZai1EyNp6DjefQ5BINeaifmgxjZCYMr13IMC4AAIEe73ZkJoxTk2Fsaq9vZyoAaPfa0b7Njqu2tQEA5iMSBkcDGBydx+C5AE5OBbNOmMQVDS+PzOPlkXn8+JVR/Prv3loDyZdmuevlaujTWujs9Pn94Dk/hs+HTV9DlXKvWqx18637opIKOXG6SlI1xGQNjsTmZDnPJV8dq1X3aqxJq9VfKgUhem4Pr51HKK5gPlKaMZ0SgovWNeKidY2YCcXxs1cn8JOB8YzTR6PzUfzrwWF88zevYd+mFuzv74TIUdN03JGxIIanQnDbBKhMDzlmJwuxxut5TbBcbV+1YmW6iVhkMBuRIKsMYp4jiDaOwq8xzEakKku2NMtZ9nrDrLY085kYuZce56x6fcCITJKqgTH92H4uKAFUAKPzS3s4mSWT9R5YWFQf691cfYzOR6AB4Ks0/tdL2QBwejZs6nUWtSUZo7YZesiXiJTtoe6PSZA1Bi+Xu9OJHEGQMfhjy3OMa3CKePPGNXjzRv3IekRScHgsgIGEt/rR8UAq3i4AXLy+qVairniqoU9rrbOrvYaqt/lHPpkVTV9XcRRQNf3vdIepeqxLNVhN/SU9CWk4rmA+KiO+KFG0UZrdNrz/knX4kz1r8dzpWfzPK2P43fBsKoeNrDL84ugUfnF0Cm1eG4JxBS5bbrNoMTouXV9qGoMGBhDdwM8RApGSVdmPVyKWEX0V0OQUISR2du00+8hpXNUgUIImp1gD6QqznGWvN8xqSzOfiaF7cQQE1esDRmQSOYoYUaHlMaRrus5EV4OzajJZ74GFRfWx3s3VR1eDExSo2vhfL2UDwPomF36DGUPXWSwvkgb1JpeYEfLFZxchUD0+rC3H7o2kMgiEwGdfGWOcU+Rx8fqmlLFcUjQcnwhicNSPk1Mh7NvUUmMJVy7V0Ke11tlVX0PV2fwjn8w8pSCJ/B6E6H+nU491qQartb+4bDxcNh4xWYU/KiMcV0q6D0cJLultxiW9zZgIxPDI4DgeGZzAbHjBiD0Z0D3VT89E4LHzaHAIsAsL7VOMjsupL5keMkYDQ1zRQAE4heUTAs4iN+YHTLSoO7Z3etHX6sZcRMbiEPiMMcxHZPS1urG9s/7i0S5n2esNs9rSzGdi5F5b2j3Y3O6pWh8wItP2Ti+8dgGKyqCxzCNnGtOgqAweh4D9/R1Vk8l6Dywsqo/1bq4+9vd3wOOo3vhfL2UDwOeu3mrqdRb1STLcS0+TE5dvbkFvqxuBmAKGRWMc9MRwPc0ubGhbmRsnIk+xs9uH696wFv/+wd34vdeZHybJQqca+rTWOrvaa6h6m3/kk9kuUogchZLwlLYLCyaqeq1LNVjt/cUucGjz2tHT5ITXIZSVi6Lda8efX3YBvv+RN+AL+7fhorUNGd8zAIGYgrNzUZyZjegJT5lWlI7b0OZCT7MLgZicU18GYjK6m5xodAk4OxPBdCiOWIne9ha1ZdkY0W+//XZceumlcDqdaGhoqLU4ywpKCW7a1we3jcNEII6orELTGKKyiolAHG4bh5v29dVl8oBaya5pDIPn/HjqxHkMnvNDKyNrtFnllXtNsW2Z715m3Wfxvcb9McxFJASiMuYiEsb9MbhtHD52+QZ87PJkeTHMRyT4oxLmIxImArGiyjOCEZlufssG3PyWPnCUIK4wyKoKRVUhqyriCgNHCW6+vC+V2M2ITIqi4eEXR/EvT5zEwy+OQlG0nDItt3fYwmIlY72bOtXWmbUsm+cpbr58YfyXFDX1v1zjf6XKlhbpHqnCZQOA3c7jii2FPXGv2NJS8aSikqTin35xEn/zg5fxT784CUmq3iK0kK6uNLV4z+wih4+/dSN8Dh6zYRlKosyYomE6JMEpcrhuT0/Fk4pqjOHERAjPnZ7FiYkQNFa9McaiOlRDn9ZaZ5tZfq3rko7RsSmfzDFZS+QZ0f/nj8oF13rlylVoHDdznM13r9Laa+k1cCHK7S+1nOcJHMUatw1rm5xocolZJxVykU9n8BzFvk0t+P/+aBe+86GL8Uev74ZzUXLwuKJhMhjH0PkIJEXDWza35NRxi8sAgOv29MApcpgOSYgpGjTGcupLRdMQiMoYm4/i7EwEM3VsUK/ls69XCFu8FVWnfOELX0BDQwPOnTuHb3zjG5ifny/6HrXINF5PPHNqGvc8NYShqRBkjUGgBH2tbty0rw+XblhTa/EKUk3ZM8pSGQSusu1kpDyzrsm6Lk9bFl1eGfcBgPsODuHuJ4cQjMrQoO/ueRwCbr68Dx/Z25d1DYN+ZH3xNWY+OyMy3frQAB58/lxqUQnombmv3d2N29/bb1gmI2UZbXMLi8XUs+6rZ9mKYTW/m9XWmfVS9g3fPoRfHjuf9fkVW1rwjT/bU9GyjeieSnLl3z+JU+ez455vaHHhF39zeUXLrmXdjerqSlDLvp5VvsbAE2B9iwvv37MO27p8WZ6NZvLS2Tk8cGgEIzPh1Pja0+zCdXt6cOHaxoqVu5ieJieEPPGEi6XedV8t5auGPq21zjaz/Lqqi8GxKZ/Maxsd+OmrEwXXeuXKlV7G4nF8e6fPtHE2X/l7N67BwZPTRZVhZA1cklwG+0ut9c9iGGMIxhX48yQhLVZnSIqG//voMTx14jzUPKpsR6cX+3d1Yt+mFog8LVgGgIXvmB4OxqjO4imF08bBJfKp5Lq1pN6efaUxqvuWjRE9ybe//W389V//tWVELxFNYzg8FsBsREKTU8T2Tu+y8ZCrhuzPnJrGLQ8PIhRX0OgUISaSSM5FZLhtHO64ZqepA4aR8gCYck263IXaspg2MOM+6dc5BA6EAIwBUVmF28Zn1C8Yk+EUeVBCoDGGiKTCY+dLagOjz2UpmUIxBRxHwBgDIQSqxrKvKSDT4TE/7nz0ONREVnqaiAmoqLpX4affsTljgrSc32GL2lDPuq+eZSuW1fhuVltn1kvZ9x0cSo3b6Y9YY8g5bptJst6BqASB48ASMWRlVYPXIVS03sBC3RWNIb13M+jG7ErW/daHBnD/oZG831+/p6dihvT0Z25EV5tJLft6OvnGOE1jiMgqInEFEUk11Uv8pbNz+NrjJxCRVHjtAgROjzcbiMlwihw+edWmqhnSLSN69aiGPq21zjaz/FrVpZyxabHM/qiE//3frxZc65WyjkuXa2w+grCkG12FReM4IYDPIYCjxNR1ZPq9JgNxRCQFLhuHVo/dUBnJe5nRLvnavlB/qRf9k49QXMF8RIKUOE1Qis5I/iYcV8BRgqisISqpyKXJvHYeF65twLHxACSV5S1jV08DTk2G4Y9J8NlFbGhzFX1ii6cULhsHt52Hja++Qb3en30lMKr7rMSiqwxKCXZ2+2otRklUWnZNY7jnqSGE4gravfZU3C075dDupZgIxHHPU0O4pLfZlImJkfK+/uQQAFb2NYvlzteWxbZBuffZs74p53UA4GMsq34dPkfmNY7kNacAEFOeXT7ZM2VKK8+XeQ3LIXc+me7+1Sm8OuaHqjGIPAEl+uKMEoASDZLCcPeTQ/jQpRekjucv53fYwmIls9rezWrrzHopW1E03P3kUNa4DehxyXON22aRXu/OBmdO3VOpegOZdbdVue6SpOLB58+l/k5fiyZttg8+fw5fePd2iCZ7b+V75oV0tVnUsq8vJt8YRymB28bDbePBEsadsAkGdY0xPHBoBBFJxRq3CJLYtrHxBGvcIqZDEh44NIJdPQ0VDydjUV2qoU9rrbPNLL8WdSl3bEqXWdMYPvitQwXXeuWu40SiG0cB3ZObowQEuiGdQIWkAvMRGds6PKCJcCFmriNthELVNKgag6Iy2AQKAlKwjPR7ldsu+dq+lLrUQv/kI6l7opKKubBUtM5I1zMtHlvqN5rGEIjLmAlJGd7pgZiCp05MAwAcAoWd5yByHGw8zSpjU7u7rLopmgZ/VIM/KkPkKdyJhKtmbeYWYjk8+1qybGKil0I8HkcgEMj4n4VFPg6PBTA0FUKjU8xKXEEIQYNTwNBUCIfHzOlHRso7PhHEsYlg2dcYldusNjB6nwMD46a0wbGJII5XsQ2MlGdE7sPjAQSjSsKrLXM4poSC5wiCURkHBsaXlNvCYjlg6eWVQ7V1Zr2UfWBgHMGoXJNxu5b1Bmpb93sPDqdCuCy2lyb/VjSGew8Om172an7mxUIIgcvGo9Vrx7pmJ1q9drhsfEkJ4U5NhjEyE4bXLqQMG6lyQOCxCxiZCePUZHZoIYvisHSzRbGYOTZV417+iIL0UM7p+3skMa4zAP6YUpHyY7IGSdVjv0uqhpi0EIYkXxm1Hv9rXX4xOEQOM2EJY3MRNORIQppPZ+TTM5QSNDhEdDU60ejgcVlfM+yLNsmjsobxQAzDiSShisoqppckRcNsWMLIbARj81E98WkFY5Mvp2dfC2pqRL/ttttACCn4v+eff77k+3/lK1+Bz+dL/a+np8dE6S1WGrMRCXIiK3gubByFrDHMRqSqlSepGmSl/GuMym1WGxi9z+h8xJQ2kFUGSdX+//buPT6K6u4f+Gdm9pbNZnMlJIGIsChgDN4oKrWCj1qtLSr28VKtWmu1INZq1QeLttI+j1h7sdVWsfprqVp9WvsUWtHWu4S2tEVEJMbIJYBckhBCyG42m+xtzu+PhTWbZJNNMrszu/N5v168NNnJnMvMnO+ZszPnZK4OUkgvpXxH1Nh8fEnuLWUp1qHb3xkYNt9E2YBxOXdkOmYaJe39nQHd2m09yw3oW/aPO1K7IU11u5Ew8zEfC0mKPaE+3u3ApJLYgLrTlvqAurc3FJtrVhl8e5siISwEvL3GK3u2YWymkdKybcrEvvrOnS2QOIje9/8Hm2Nbi/QjqgohjsQLEft5uDT0bv/1Tn+kOgIhRFTAabPApshQYq8ZxA0WM1KJM5AlXHxyFV74+pm45KTKAX2BqCrQEQhj15HB9EA4isM9wXQUEQDQG47ikD+IPR0BtHp74Q9GNF+XJNuOfabpOoh+6623orGxcch/J5544qj3/+1vfxterzf+b+/e5PMoEpU4bbAe+XZ4MMGoCqssocRpy1h6NkWG1TL2bVLNt1Z1kOp+JhQ5NakDqyLF5+kaS75TznsK6aWUb4sMGUCyL5JVEYv9E4qcw+abKBswLueOTMdMo6Q9ocipW7utZ7kBfcs+qSRf0+1GwszHXCtHp3ypKIwNqI8rsA87oF7osMEqx+aaHUwoGluwrdBh7LJnA8ZmGikt26ZM7KvvFBgSEt9o6vv/g02VoUX6FlmGdGQOdkmK/TxcGnq3/3qnP1J98ytJEiyKHBtMV2KD6YPFjJHEGZfDgs+dWIVSpxXjC+wosFvQP4IFQlH4g1H86JVt+O2/PkZHd/oGmWPTp0XQ5uvFx4cCONgVRE8oqsm+s+3YZ5qug+hlZWWYPn36kP8cDseo92+32+F2uxP+EamqQP0+L+q2HUT9Pi/UI3dFNVVueMpdOBwID/g2TwiBzkAYnnIXaqq0OY9SSW9aRQGmVxTgcCAMVcQWuejqDaMnFIUq1AHbjDXfffMUjcbmFmvz9eJwdwjRaDTlfaVal/NnVo6oDpJtM72iANNGUAfJzoFU8943vbEcl5pKNwryLIhEBVSRGKRUocZeC8uzYv7MyiHrmyhbMC7njkzHzGRpJ2uD05X2/JmVKMizxtvtiKoiHI39N93tdkK51X7lVtNbbmBg2ftKd9kXnj0FliOPfwmBI48Sxv4dPf0ssoSFZ0/RPG09y63nddbfUH2nkZDl2Gv1FYUOHFPiRFmBHXmDzGM/dXw+qkvz4esNQ/Rb4k1AoKs3jOrSfEwdr/0XJ2bD2ExHpXqda9k2ZWJfhU7LoE8Qq0JAiE/mSi90JC4ZOJb0+/ZPhIg91Rs58nSvw/bJMFyyNMZaL8mOpR7HOJV8jdVg+ZUkCRZZhlWOrWU2qSwxZow0zkwdn49jylwIRVVUFNoxpSwfZfm2AU+ydwRC+PU/duPKJ/+FZWsasGnPYc2fFu9LFbG8tnh78PGhbrT7g+gNj35A3Uh9DyPKmoVF9+zZg46ODuzZswfRaBSbN28GAEydOhUu19gm7SfzWL+jHSvqmtDU5kc4Gnt1x1PuwqK5HsyZWoZFcz1Yuroerb4gipxW2BUZwWjsxtRlV7BorkezxRNkWRo2vVvmeQAAd7ywGdsO+CGEgDjyDbYkSSjNt8W30SLfR/O0+PlNaGz1J4QSCUCR05rSvlIp26K5Hlgscsp1MPQ2U1Oug+HOgdSOy1RNjsvic6aiodmLh17ZilBEwKKoCSvFK7KExfM8mi9URkQ0Vqm28+lYcOho2kO1welK22KRsXieBw/+9SMEIwNviGQJaWu3E8rd5u83pytQksZyA5+UXY+YZbMpuHLWRDy3IfaE7GC3olfOmqj5oqKAvuXW8zrra7i+02gpsgS3wwq3w4pIVEV3MAp/KIJgOApZknD17Go8/Po2tPtDKHBYYVMkhKKxwQKnTcHVs6u5qCiRRkZynWvZNmVmXwJ5VhndIRUCQDCS+IWoDKDQacWBrpAm6Q/WPxGI9REsioTesDpsGmOpl2TH8uzjyrBue3vGj/Fw+RprLEklv26HBXecdzwqCvPQGQghFFFHHGcG277IaUWeTcHhQAgRVSAUUeNvrkVVgXXb2rFuWzsmFudh/sxKfLamAoV51jGVdShRVcDXE4avJwyrEluQ1OUY2YKkRul7GFXWjMx897vfxSmnnIL7778ffr8fp5xyCk455ZQxzZlO5rJ+RzuWrq5HY4svtuhRgR35dgsaW7qwdHU91u9ox5ypZVi+oBYzKgsQCEbQ5g8iEIxgRmUBli+oHXPj3t/I05OOvPp65GmsUe8nuYZmL3w94QE3qAKAryeMhmavpmVLZTuttknlHMj0cbnpbA+WXDgNhU4rVFUgHBVQVYFCpxVLLpyGm872pHzsiIgyKdMxM7nB2+B0SvZAURofNBostSNPCGUuUT1j1udnVsFlH3yQ3GVX8PmZVWlLW89y632dpdp3GiuLIqPQacWEojxUlzhRkm/D7Mml+Nb5x2PKOBd6QxEcCoTQG4pgyjgXvnX+8TjlmGJN0iYyu9Fc51q2TZnY15RxLrjsyoApOCTEBtBvmedJQzv7Sf9EliS486w4psSZchqjqZdkx/L9vbEHt7bs69TlGGcilqSSX5fdgonFTlQW5iHPpuCUY4pHFGcG2z4YjmJahRsPXHoifnfzGbhhzrEY57In/N2+wz1YUbcTV/zyn3jwrx/hg/3etD6dDsTm+D8ciC1Iur+zB95AeNB5/wejd9/DyCSR7iNnID6fD4WFhfB6vXxNzWRUVeD6lRvQ2OJDhduRMAejEAKtviBmVBbg6RtmQ5YlqKpAQ7MPHYEQSpw21FS50/pNW7L0+uZ7fIEdwYhARFVhkWXYLRIOdIU0zXckomLW8jfgDYRhs8QC/tFvzwGBUCR2w7hx6XkpP3GVap5S2W4s24z0HMj0cYlEVKzZ0oL9nQFMKHJi/sxKPoFOmjBy7DNy3ih1esTMkbTBWuobJy0yAKlPnBQCERUjjpOpSii3245guE+5rRIO+NJX7v4yHbP6lr3cZUN7dzi+wHdZvhVt/nBGyq5nrM70dXY0zZH2nbQWjETR1RPBe3s70dEdRKHDhqnj8zP+BHp1iXNET/INxeixz+j5I22N9TrXsm1K176K8qz40asf4aPWLpQX2ODriSIcVWFVZLjzFLR1xWLIyus/hcbWrlGnn0r/ZHqFC3dfMB2dPeGU0xjJ/fRgx1IIgV3t3QiEonDaFEwelw8Jn3yW7mOc6Vgykvz2hqOxJ7d7w9hxoBve3lBKcUYVYsjto6rAv3cdwovvt+CdXR2DPu4wpSwf80+qxHkzxiPfnrlJQmyW2BPq+fbhn1DXo++hl1RjX9ZM50I0Fg3NPjS1+VHstA1YxEiSJBQ5rWhq86Oh2YfaiYWQZQm1Ewszlr9k6fXNtyzLyLMBwCdPYWmd7zVbWtDVE4ZFkSBLRxrUeHVJsCgqunrCWLOlBQtOnTCmso1mu7FsM9JzINV9aXVcLBY55TolIjKSTMfMkbbBWuobJ/svDAYAkEYeJ1OVUG4ps+XuL9Mxq2/ZFUXBeHfiE+lFTmSk7HrG6kxfZ8Do+k5as1sU2AsUnH/CeAQjUXQHo+gORlJ+mo6IhjbW61zLtild+6rf58XOg92xGCIrKM4fPIY0tnaNKf1U+ic7D3ZDliTMPX7cqMqSavp9j2VvWEUoqsJyZLHI3pAaX4siE8c407FkJPl1WBU4rAqKnDa486zoDkZTekJcliQcX5F8WmlFljDHU4Y5njK0envxcn0L/lLfgsOBcHybne3deOTNHfjlup04d/p4zD+pEsePL0gp32MRiqjoiITQ0R2C3arEpnyxW6AMMjiuR9/D6DiITqbQEQghfGQhj8HYFRleVaAjkL4VlEcj0/ne3xmACsCS5MtFWQKiR7bLNlrWZbaeT0REuUDPNljPOGnm2GPmsuvJaPVutyiwWxSU5NvQG47CH4ygOxhBVKOF6YjMyGjXeTpkqox612Wy9COqCiEARQaiauznvoP7euUrU+mnwmaRUV7gQMSpwtsTRldvBKpGk3ZUFDpw41mTcd2Zk/CPHYfw4vvN2Ly3M/55b1jFy/UteLm+BdMqCnDxzEqcM70cDqv267z0FwxHEQxHccgfRJ5NQb7dgnzb4APqFMNBdDKFEmds1eRQVIVDHtgYBaMqrLKEEqdNh9wll+l8TyhyQkZssazB2k1VxB5Mn1Dk1CS9TNKyLrP1fCIiygV6tsF6xkkzxx4zl11PRq73o08PlubbEAjFBtQDodSeICSiTxj5OtdKpsqod10mS98iy5COLIgtSRjwJp1e+cpU+iNhUWSUuuwoctri07xo9UWtVZExb9o4zJs2Dns6AnhpSzNebTiArt5IfJutrV34UWsXHq9rwmdPqMAXZlZiclm+JukPpycURU8oinZwQH0oHEQnU6ipcsNT7kJjSxcq3PKAebg6A7F50Gqq9Jn3L9lcU33zPd4tDZj/VOt8z59Zie+91ABvIAxZUj+Z0gWAKlREorE50efPrNQkvb7SPc9o37osL8CAufBGUpfpOJ/MNN9YMqwDzo1Po2O2aychNhZIA+YcTWdM7xsnJUQhSXJ8TnQhVESiSFuczHSfYCiZPueM0o/Ts40OhaJ4Yt1OfNzRjUkl+Vh49hTYbOl9Ss0o9T4USZJiN/p2C6KqgD8YgT8YQTAc1S1PRNnESLFlNJLFo77tdWVhHiaXObH1QHda27JU6nJ6hQuqEKjbdlDzOeRnVBQM2mY7rDJsihyfE91h+yRupVL+scb8VGKJlvWiBUWWUJxvQ2GeFV3BCHw9qS/KmYpjSpy4Zd5U3PjpyVi77SDWvN+CD1t88c+7g1Gsfm8/Vr+3H7UTCnHxSZX4zHHjYMtQn2O4AXWz3Xv0xUF0MgVZlrBorgdLV9ej1RdEkdMKuyIjGFXRGQjDZVewaK5Hlwt//Y52rKhrQlObH+GogFWR4Cl3YdFcD+ZMLcOiuR7c8cJmbDvghxAifrMuSRJK822a5ttikbF4ngcPvbIVoYiARVEhH/nWOhIVUGQJi+d5NL9hfGpdEx5b24SunjBUADKA773UgMXzPLjpbI8maRw9BxY/vwmNLf6ExT2kztgcdanWpdbn03DngBmwDjJzHVDuMeO1c7QNvuOFzdjW5kffB08lCSjRODb2dTROPvjXjxCKAkDiDZUsIS1xEuhX7gz0CZLR45wzQj9Ozzb63lVb8PuN+xDp8zTco29tx5WzJuKBy2amLV0j1PtIKLKEwjwrCvOsCEdV+HtjA+qcP50oOaPEltFIFo+OKc7Dyx+0JrTXeTYFVkVOa1s2XF267BZ4e8JY9Nt3xxw/k5X97OPKsLcjMKCciixDkWPzoveG1ZTLr0XMHy6WKDI0qxetyX3iij8YgbcnrOmXtHarggtqKnBBTQWa2vxYs6UFr394AD190qjf70X9fi8K85rwuRMr8PmZlZhQlKdZHobTf0C9Yb8Xv1m/GzsPdhvueGUCH28j05gztQzLF9RiRmUBAsEI2vxBBIIRzKgswPIFtbpc8Ot3tGPp6no0tviQb7egvMCOfLsFjS1dWLq6Hut3tPf7C+nIN7dHVtNOQ55uOtuDJRdOQ6HTClUVCEcFVDX2BPqSC6dpfqP41LomPPTK1tjT77IEmyJBliV4A2E89MpWPLWuSbO0Gpq98PWEB9SbAODrCaOh2ZvyvrQ6n0Z+DuQe1kFmrwPKHbx2jhJHpnDIzDQONVWFKMyzov+tpgSgMM+KmqpMLcCU/j5Bf3qec3r24/Rso+9dtQXPbdibMIAOABFV4LkNe3Hvqi1pSxswZv85FVZFRnG+DdUlTkwozkOR0wZrkvl4iaivzMeW0UgWj97dfRjPbdg7oL3uDkbh6wmjwKFksC37pC5VIeDrCWNPR2DM8XOoWPzcv/fgmtOPGdBmn1RdiCUXTsPMiUUpl1/LmJ8sllQW2gEALd5ew/dlXXYLJhTloaooD06b9s8je8pduP284/CHhWfgW+cfh6njEhcu9faE8bt39uLaX23A3f+3Beu2H0Qkw18Sr9/RjvtfbEBDsw82i4zSfBucNsWQxytdJGGiieN8Ph8KCwvh9XrhdhvzdSRKP6O8eqKqAtev3IDGFh8q3I4BrzW1+oKYXuECIOGjVh/GF9gHvLJ+oCuEGZUFePqG2ZqXIROvLEciKmYtfwPeQBg2izRg+phQJDZ4v3HpeWNOu39agBR/MgAQo05rLOdTKudAuo6vUbAO0n8dGDn2GTlvRmfma6dv2ce77QNelz7gS19sTEi7wA5vbyQ+NVihw5LWuNw/7Uz2Cfqnr+c5l+l+XCb7Kv2FQlGcsOzV+AB6nyqPv4FhkSV8uOyCtE/tYpT+81gFI1EEgtERP6FeXeLUbBDe6LHP6PkjbekdW0YjWTxSVRWNrV3x9UnsVhnSkS8D4u11nhUrb/gUfL0RzduyZHWpSBJafb3x6VQmj8uP52uk8TPVWLzy+k+hsbVrQJudaluerpjfN/2iPCt+9OpWfNSanX3ZUCS2CKk/GEnLehxCCHzU2oUX32/G2q0HEYwMjFmlLhsuOrECn6+tRLnboXke+lKFwJI/1mPnQT/KXLb4OQzE+icH/SGcUFmAZ756uiGP13BSjX2czoVMR5Yl1E7M1FNiyTU0+9DU5kex05YQMIDY615FTis+au2CBAnFThtkWUaeDei7knaR04qmNj8amn2al8likbHg1Ama7rO/NVta0NUThkVJvCkFAFmSYVFUdPWEsWZLy5jzMmha8WqXRp3WWM6nVM6BdB1fo2AdZPY6oNxh5munb9llKbOxMSFtWUZxv0WwMpl2JsvdP309z7lM9+P0bKOfWLdz0AH0oz8LEXsi/Yl1O3HbecdpmnZ/Ruk/j5XdosBuUVCcb0MooqI7GEF3KILQIIMTRGagd2wZjWTxyNsTQd+Xdj55YKpPe90bxu72QFr61MnqsicURSgam0olFFXRG1KRd+SLz5HGz1RjcWNr16D7SrUtT1fM75t+/T4vdh7Uv18xWjaLjHEFdhQ7rfD2hNHVG4Gq4WC6JEmYUenGjEo3bpnnwesfHsCa91vwcUcgvs0hfwjP/msPnvv3HpwxpRTzT6rErEklaVkMdMeBbuw91A23w5owgA7ErjWX3YJtrV2o23YQpx1bnLOLknIQnUgnHYEQwlEBW5KnWuyKjHA09nr6UNt4VYGOQCiNOU2f/Z0BqAAsSdpWWQKiR7bLprRSlco5kM3HNxWsA2Oem2R8Zr529Cy7WdM2Qvp60bON/rijW9PtKJHNIsNmsaE434Zw9OiAepSLkpKpZGPbnizPfd8uETjyxk6ftjvdfepk+YqoKoQAFBmIqrGf+35RMZI6ztTxykQ62XjuDcaiyCh12VHktMHXE4avN4yoqu2T6QUOKy47dSIWnDIBW/Z5sWZLC9ZtOxj/ol0VwPqmQ1jfdAgVbge+MLMSF55YgZJ82zB7Tp23N4SwKuBWBu8Q2RQJXUKgrasX7V1BHJJCcNoUuOwWOG3KgC9KshUH0Yl0UuK0wXrk22iHPPAV3GBUhVWRIGGYbWQJJU7tGsdMmlDkhIxYoz/Yl5RHX8WbUOTMqrRSldI5kMXHNxWsA2Oem2R8Zr529Cy7WdM2Qvp60bONnlSSr+l2lJxVkVHktKHIifiAuj/IJ9Qp92Vj254sz32nXJIw8A2edPepk+XLIsuQpCPpS7Gf+xpJHWfqeGUinWw894aiyBKK820ozLOiKxiBryes+cLWkiThpOoinFRdhMPnePDqB61Ys6UFLd7e+Datvl78v7/vwsr1u/GZqWWYf1IlTq4uGvMgdqHDBqssIRwVsA/yZEEoKmCVJBQ6YsdLCBH7cjoYgSJLyLdb4LJb4LCmd/q5dOPqKkQ6qalyw1PuwuFAeMAcWkIIdAbCmF5RgGkVBUNu4yl3oaYqO+crnD+zEgV5VkSiAqpIDDCqUBGJChTkWTF/ZmVWpZWqVM6BbD6+qWAdGPPcJOMz87WjZ9nNmrYR0teLnm30wrOnwCIfnTc38bO+c6IvPHuK5mmb2dEB9YnFnyxKmhvPzxENlI1te7I8F+ZZEr7s7DtmmIk+dbJ8OawybIqMyJGnrh22T4bhRlrHmTpemUgnG8+9VMiyhMI8K6pLnBjvdqRt0LjYacNVs4/BszfOxkNfrMVZU8sSzv+oKrB220Hc+Yct+MrKd/CHd/fB1xMedXpTx+ejujQfvt4wRL8lhwUEunrDqC7Nx9TxA7/Yj6qxhXWbO3uwtyOAzkAo44uiaoWD6ERjoKoC9fu8qNt2EPX7vFBH8NqOLEtYNNcDl11Bqy+InnAUqirQE46i1ReEy67glnlTccu82DYt3l4cDoTg6wnjcCCEFm8vXHYFi+Z60raA2GjLliqLRcbieR4osoTQkYVXVKEiosYWflFkCYvneeILdY0lT/3TCkejiERVhKPRQdPKhFTOgdEc30wcO62kqw6yyUivAyLAWNdOJKJi9ab9+MVb27F6035E0vzkpp5lN2vaA9PvRWcgBG9PCJ2BEFp96e2T9BUKRfHoG9tx5wub8egb2xEKpXfqDT3baJtNwZWzJsZ/FuKTf0ddOWti2hcVNTO7RUFJvg0WjRYVJTIavWNLKvr3M1RVDJrnYFTAYfmkPYyqYkB7vWiuB41H5m3W+j4pWV32RlQosgxFlmBRJPSG1VHXcaaOVyrp3HzWFPx5c/Oo+3/ZcO6NVb7dgqqiPFQV5SHfnp6JQGRJwqeOLcH3L6nB/950Bq4/cxLKXIlP7+893IMVa5tw+S//iR/89SM0NHtHvBiqLEm4enY1nDYF7f4QeiMqVBE7v9v9salbrp5dDTnJE++qENjW6sf6pnb8q6kDuw91o8Xbg67esKHHK/qTRDqWkTUorjROWlq/ox0r6prQ1OZHOCpgVSR4yl1YNNeDOVPLRrcfVcAqD9zPU+ua8NjaJnT1hKEi9u1XQZ4Vi+d5cNPZHsOWLVV9y3d06rr+5dMqT/eu2oLfb9wXnz8MiD3FdeWsiXjgspkalyw1qZwDo9pXBo6dVrSsg2yVynUwGkaOfUbOW7bQ+9rJdHzqS8+ymzVtIH1tVSr0jOFmLTdpz+ixz+j5o/TQO7YkM1Q/o6aqcNA8H1Och5c/aB3QXn/+xArsOdyT9vukZHV59nFlWLe9Xft7vjQer2Tp9K3jsfb/jHrupUMooqKzJ4TuYHTEg9gjEVUF/rXzENZsacE7uzowWEpTxuVj/swqnDejfEQD/O/tOYznN+zF3kPdCIvYFC7Vpfm4enY1TjmmePi/OXKM+/6NJEnItylwOSzIs+ozf3qqsY+D6ESjsH5HO5auroc/GEGx0wabIiMUVXE4EIbLrmD5gtoRNfiqKtDQ7ENHIIQSpw01Ve74N65904o1KLEnkHrCUbjslhGnlemypSoSUbFmSwv2dwYwociJ+TMr4091aZWno/vp6g3DIstQhYAsSYioKgoc1rSVLRVDnQOp0uvYaUWLOsh2Q10Ho2Xk2GfkvGUTva6dp9Y14aFXtiKqClgUCfKR+T4j0djTXksunJb2wUU92w0zpt03jjptFsiSBFUIBEJRFDi075P0de+qLXhuw96kn18zuzrtA8rpaKNTFQpF8cS6nfi4oxuTSvKx8OwpfAI9Sxk99hk9f5Q+RuuLp9LPuPGsKYPmuX97Xeqy4rt/bsjYfVKyutSyjjN1vPqn88+mg/jhq9s07f8Z7dxLt0hUhbcnjK7eCNQ0D8m2eHvw8pYW/PWDVhwODJzOxWGVcd6M8Zg/sxLHjS9IaZ+qENhxoBve3hAKHTZMHZ+f9An09/YcxsOvb0MgFIXbYYVVic2r7usNw2lT8K3zj08YfFdkCU6bBQWOzM6fzkH0QbBDQFpQVYHrV25AY4sPFW5HwrdkQgi0+oKYUVmAp2+YPeaGP5Np6ZFeJvNkxLJpKdfLR6Nn5Nhn5LzR0CIRFbOWvwFvIAybRYIsfTKQqIrYa9OFTis2Lj2PUxHlCD3jTCgUxQnLXo0/id33Pq3v3OAfLruAA8tkeEaPfUbPH5mDlv0M3idph/0/balqbDDZ1xNBRE3vdIjhqIp/7GjHi+83Y/Ne76DbTK8owPyTqnDOtHGaDGCrQmDJH+ux86AfZS4bpD4rjAgItPtDmDLOhYe+WDvoILxFluG0KxlZkDTV2MezmmiEGpp9aGrzo9hpG/CaiSRJKHJa0dTmR0OzL6vS0iO9TObJiGXTUq6Xj4iMZc2WFnT1hI88gZTYnZQlGRZFQldPGGu2tOiUQ9KannHmiXU7Bx1A7/tzRBV4Yt1OzdMmIqLM07Kfwfsk7bD/py1ZllDktKG6JA9lBXZY07j+hlWRMW9aOR6+4mT85iufwhdPnQBXv2lcPmrtwo9e3YrLf/lP/OKtHdh9qHtMae440I29h7rhdlgTBtABQIKEAocVew91Y8eBwdOJqGp8QdI9hwI45A+iN5zetXCGk56Z7YlyWEcghPCRlbUHY1dkeFWBjkAoq9LSI71M5smIZdNSrpePiIxlf2cAKgBLkge2ZAmIHtmOcoOecebjjtRu4lLdjoiIjE3Lfgbvk7TD/l96SJIEt8MKt8OK7mAEnT1hBNM4WHxMqROLz5mKr501GWu3HcSa95vxYUtX/PPuYBSr3tuPVe/tx0kTCzH/pCqcNbUMthG+XeDtDSGsCriVwU8YmyKhSwh4e4e/9iKqCm9PbBocqyKj0Bmrr0zjIDrRCJU4bbAqEkJRFQ554CslwagKqyyhxGkb5K+Nm5Ye6WUyT0Ysm5ZyvXxEZCwTipyQEZsDc7A3n1URW8hrQpEz01mjNNEzzkwqydd0OyIiMjYt+xm8T9IO+3/pl2+3IN9uQW84is5AGIFQJG1p2a0KLqipwAU1FdjR5seaLc1448M29PQZwH9/nxfv7/OiKM+Kz9VW4PO1lagqyktp/4UOG6xybA50+yDfvISisYVJCx0ju/bCURU9R+ZYzzQOopPpjHXRipoqNzzlLjS2dKHCLQ+YU60zEMaMygLUVI19DsGRpqVl2cYXSAhGBCKqCossw26RNE8vHXlKZT+pHrdUypfpRVCSpZfJ89JMMn189Vy0jmgk5s+sxPdeaoA3EIYsqQPmxIxEY3Nizp9ZqWMuc5cebYVW8Xg0Fp49BY++tR0RVSDZak4WWcLCs6donnZfei7uqXd8MNuib0TpZNTFJUezr3S1DVr2M1K9T5pRUYD6fd6UyzJU2TPRZuqRfjb3/7ItjjmsCioKFYQiKjp7QugORpHOJS2nlrtwx3nH4+tnT8HrH7ZhzZZm7Dz4yRt+nT1h/O+Gvfjdhr2YdWwx5s+swpmeUihD1OHU8fmoLs1POid6V28YU8a5MHX8wIcgRrJ4aSZxEJ1MZf2Odqyoa0JTmx/hqIBVkeApd2HRXE/Kq3HLsoRFcz1Yuroerb4gipxW2BUZwaiKziOrey+a69GkQR5JWlqW7Y4XNmNbmz/hRlWSgJJ8m6bpaZ2nVPaT6nFLpXyZqoOjhksvU+elWWT6+D61rgmPrW1CV08YKmKLlnzvpQYsnucZ8Qr3ROlmschYPM+Dh17ZilBEwKKokKXYE0iRqIAiS1g8z8MvgdJAr7ZCq3g8GjabgitnTcRzG/Ym3ebKWRPTOqB976ot+P3GffG52QHg0be248pZE/HAZTPTli6gf3zIdDwkymVaXk967yudbYOW/YxU7gPPPq4MNzz9TsplGarsANLeZuqVfrb2/7I5jtksMsoLHIg4Y1OZdPVGoKZxMN1ps+CSk6tw8UmVaGzpwpotzXh760GEIrGFTwWAd3Yfxju7D6PMZcPnaytxUW0lxhXYB+xLliRcPbsaD7++De3+EAocVtgUCaFobADdaVNw9ezqAYPj7+05jOc37MXeQ90IqwJWWUJ1aT6unl2NU44pTlvZUyGJdH6VYTBcadzc1u9ox9LV9fAHIyh22mBTZISiKg4fCZzLF9SOqAFNaIiPXNjpaoiHS0vLsq3f0Y47XtiMju4QhIg98SVJsXm6SvJt+OkVJwOApnWpRZ5GUr7hjlsq9alHHaSSXibPy1ymdXsxnKfWNeGhV7YiqoojC/UkdkaXXDht1AMlRo59Rs4bpabv4J5A7BXegjwrv/xJk3S2FanQMh6P1FPrmrD8Lx9hsBsXCcDSi6anrez3rtoy5AD+NbOr0zaQboRjnsl4aAZGj31Gz1820/qeTc99Zapt0LKfkew+6ezjyvDcv/ekXJahyn502vWoKtJWL3qnD2RX/y/X4piqCvh6w/D2hBFVMzOc6+sJ47UPD2DN+83Ye7hnwOeyBJw5pRQXn1yF0yYVDz0oLmJTuCQbFH9vz2E8/Po2BI5M12JVYtPB+I4Mun/r/ONxyjHFyLdbMN7t0K6MKcY+DqKTKaiqwPUrN6CxxYcKt2PAK1ytviBmVBbg6Rtmj+gJqky+EpQsLS3L1ndf4912BMN9XtW2SjjgC2F6RQEAgY9auzSty7HkaaTpDffq23D1qWcdpJJetr2qZjTpai+SiURUzFr+BryBMGwWacBrkaFI7LXIjUvPG9VTHUaOfUbOG6VO72kmzCLdbcVw0hGPU5VQdkVCVCB+065IsTk101X2UCiKE5a9Gn8Cve994dG7KIss4cNlF2j+JLyRjnkm4qFZGD32GT1/2Spd92x67EuPvrJW/Yz+90kzKgpww9PvjOg+K1nZVaFi2wE/AOD4chdkWR5yX6PNf9L0VRXb2o6kP96VEDOMflzSJZfjmBACvt4IfD1hhKNqxtJ8f58XL25uxt93tCe8nXdUZaEDX5hZiQtPrEBxn3UGUpmeRRUCS/5Yn3T6l3Z/CFPGufDQF2tR4LDqMojO6VzIFBqafWhq86PYaUtoOIHY01NFTiua2vxoaPahdmJhyvuVZWlE249FsrS0LFvffcmSjDwbAHxyQ1jktGJraxcEhOZ1OZY8jTS9oY5bKvWpZx2kkl4mz8tclK72Ipk1W1rQ1RM+8oRhYsdTlmRYFBVdPWGs2dKCBadOGHN6RFqzWGSemxmgd1uRjnicqoSyyzL636JbkL6yP7Fu56AD6Ed/FgKIqAJPrNuJ2847TtO0jXTMMxEPiXJZuu7Z9NhXptsGLfsZ/e+T6vd5R1SWocoeDIsjc1bH1g3Jsw29r9EYMv3I0XVDBILh9KTfVzb0/3I5jkmShMI8KwrzrPAHI/D2hBHssyBoutI8uboIJ1cXoaM7hFc+aMVLW1rQ6uuNb9Pi7cVTf9uFlf/Yjc8cV4aLT6rCzImFkCUJx1e4htz/jgPd2HuoG26HNWEAHQAkSChwWLH3UDd2HOjGKZOK0lHEYXEQnUyhIxBCOCpgUwb/ZtSuyPCqAh2BUIZzNnZali2VfYWiKiCQsbrM9LFjHVCm63t/ZwAqgEEWLAcQez0uemQ7IjIvvdsKPWORnmX/uKN7+I1GsN1ImPmYE+WaTN+zpXNfudQ2jLQsQ20fUdX4NGcRVUXfL5oH25fW+Y2lefTL3fSkn21y6VwdistugctuQU8oCm9PGIFQJO1pluTbcPXpx+Cq2dV4Z3cHXnq/Bf/ceQhHH06PqAJvbz2It7cexDElTsw/qRKfPWE8ChzWpPv09oYQVgXcyuAdH5sioUsIeHv1O14cRCdTKHHaYFUkhKIqHPLAV22DURVWWUJJn9dNsoWWZUtlXzZFhoDIWF1m+tixDijT9T2hyAkZsTluB3uLUBWxKQsmFDk1SY+IspPebYWesUjPsk8qydd0u5Ew8zEnyjWZvmdL575yqW0YaVmG2t4iy/E3lizywEFbLepluPSB2CB+utLPNrl0rqYiz6Ygz6YgGIkNpncHo0j3DN6yJOH0yaU4fXIp2ny9+MsHrXi5vgWH/J8MdO/pCOCxt5vw1N924Zxp43DxSVWYXlEw4O2AQocNVjk2B7p9kCcIQtHYfOqFDv2Ol7EmLCJKk5oqNzzlLhwOhAc0IkIIdAbC8JS7UFOlz7x/qipQv8+Lum0HUb/PC3UEC0SMpmzJ0uu7L1Wo6AlF0dUbRk8oClXEVi+fVlGA6RUFsW3UftuoquZ1meljl0p6fevAKHnqm14komL1pv34xVvbsXrTfkQimZkjzSjGcj0BmT/n5s+sREGeFZGogCoSj5UqVESiAgV5VsyfWalJepR7xnrO0+hkut77txWqEIiqAqoQGWkr9OxL6dlOLjx7CixHRrCFQGwy9iP/+s6JvvDsKZqn3bfcUTWKiKoiHFURUdXYzzl8zPtiG0e5QMvrSe99patt0ONaH2lZhtrebpUgSRIkCQMGALVqM4dM3yLFF/u2KcDh7hDafL043B1CVI0OmX6utrOpHt8ZFQUjKr+W9ZWOurdbFJQXOFBdnIfCPOuAucfTpdztwFfmHIvf3XQGvn9xDT51bOKioaGIilcbDmDx8+/h689uwpr3mxOemp86Ph/Vpfnw9YYh+i0lLyDQ1RtGdWk+po7X/sGFVPFJdDIFWZawaK4HS1fXo9UXRJHTCrsiIxiNDfq67AoWzfXosphEwirhUQGrElslfNFcT0qrRI+0bMOlt2iuB3e8sBnbDvghhIi/kiZJEkrzbbhlXmy17Tte2IxtbX70jUWSFHutR8u6zPSxSyW9o3VgpDwdTa/vSukqYt+Ufu+lBkOulJ4OY72egMyfcxaLjMXzPHjola0IRQQsigpZij1hGIkKKLKExfM8hluoh4xBi3OeRk6Pej/aVvzgrx8hGDk6kvsJRUJa2wo9+1J6tpM2m4IrZ03Ecxv2Auhf6zFXzpqo+aKiwCflfvAvHyEUHZi6jNw95kexjaNcoeX1pPe+0tE26HWtj7Qsw21fmm+DAHCgK5SWNnO49EvybegORtDY6k+IGFJnbO2SwdLP5XY2leN79nFluOHpd1Iuv5b1le66tygySl12FDlt6OoNw9sTRjQDX5AosoSzjivDWceVYX9nD17e0oK/ftAKb084vs2Og3789I3teKJuJ847oRwXz6yCp9yFq2dX4+HXt6HdH0KBwwqbIiEUjQ2gO20Krp5dnbEvBQYjiXQ/228gXGmcEhopVcAq6xsg1u9ox9LV9fAHIyh22mA7Mt/24SMN+vIFtSnnK5WypZIeEBsg7+gODTpA/tMrTu63TeJA+9FttK7PTB+7VOvTSHl6al0THnplK6KqOLIIWeIAw5ILp+X0QLqW19PR/WXy+Pb9AiS2JBFQkGcd8xcgRo59Rs5bNtD6nKfU6Fnv63e0Y/Hzm9AZCCfeHCN2c/zY1aem/Zjr2ZdKVzs5nPU72nHzsxvhDw5csMtlV/DktbPSVvan1jXhwb9+hMHueWUJ+Pbnpqc9tut1zHO1jTN67DN6/rKdlteT3vvSKn0jXOsjLctQ2wNIe5uZLP1jivPwu3f2IjpIzFAk4J5+McMIdZ8Jyerr7OPK8Ny/96Rcfq3HbzJd90IIdAUj8AbCCEcz+7Z6KKLib9vbsWZLM7bs8w66zQmVBZh/UhWKnVb84d392HuoG2ERm8KlujQfV8+uxinHxJ5uz7dbMN7t0Cx/qcY+DqKT6aiqQEOzDx2BEEqcNtRUuXV5Al1VBa5fuQGNLT5UuB0J80EJIdDqC2JGZQGevmF2yvkbqmyppDe9ogCAwEetXRhfYEcwIhBRVVhkGXaLhANdIUyvcAGQ8FGrD+PddgTDfbaxSjjgC40436nK9LFLJT2j5CkSUTFr+RvwBsKwWSTI0idPpalCRSgiUOi0YuPS83LyieZ0XE9H95vJ4xuJqFizpQX7OwOYUOTE/JmVYz5eRo59Rs6b0aXrnKeh6VnvfdMud9ng640iHFVhVWS4HQra/OGMHXM9+1LpaCeH0r/e27vDCB1ZH6Us35rWeu8f29UjU8hIUmwAPZOxXY/+Tq62cUaPfUbPXy7Q8nrSe19jTd9I1/pIyzLcvXe628z+aUwrd2H2D96MxwxAiscMQAyIGUaq+0zoX18zKgpww9PvpFx+LevLCHXvD0bQGQghpMPUr7sPdeOlLS14taEV3YM8oFDgsOD8E8ZjZlUR8uwyCh02TB2fn/AEul6D6JzOhUxHliXUTizUOxtoaPahqc2PYqdtwIIKkiShyGlFU5sfDc2+lPM7VNlSSW9raxcEBIqdNsiyjDwb0HdV7yKnFR+1dkGCFNtGGnybkeY7VZk+dqmkZ5Q8rdnSgq6e8JEn0BNvpGVJhkVR0dUTxpotLVhw6oRMZTdj0nE9AZk/vhaLnJPHh7SXrnOehqZnvfdNW1EUFOcnTh9S5ETGjrmefalMt5P96328O3P13j+297+PzmRsz/QxZxtHuUzL60nvfY01fSNd6yMty1DbZ6LN7J/G6k37B94PxqtUGhAzjFT3mdC/vur3eUdUfi3rywh177Jb4LJb0BOKorMnhJ7QwMHsdDm2NB+3njMVXztrMt7eehBr3m/GR61d8c+7eiNYtWk/Vm3aj5OrCzF/ZhUmj3NCVvT/MoeD6EQ66QiEEI4K2JTBnxyyKzK8qkBHIDTo5+lILxRVAYEhtwlHY/OwZirflJr9nQGoAAZZxBpA7Im16JHtclGmrycivfGc14ee9c5jrg89693MsZ3nO5E58FrXzkhjhtnrfqTl17K+jFT3eTYFebY8BCNReANh+IOR4f9IIw6rgs+dWIHPnViBbQe68NKWFrzReAC94U+ejt+814vNe70odlpx4YkV+MLMSlQW5mUsj/3l3jv9RFmixGmDVZFiA9eDCEZVWGUJJU5bxtKzKTKslmHypEjx+boykW9KzYQiJ2Rg0DlTceT30pHtclGmrycivfGc14ee9c5jrg89693MsZ3nO5E58FrXzkhjhtnrfqTl17K+jFj3douCcrcD1SVOuPOsA56QT7fjxxfgW+cfjz98/Ux889zjMGVcfsLnhwNh/O+Gvfjy/9uAe/64Beu2HUQkw/O6AxxEJ9JNTZUbnnIXDgfC6L80gRACnYEwPOUu1FRpMxdh3/RUoaInFEVXbxg9oShUEVudelpFAaZXFAyZp+kVBZg2zDZa5nukVFWgfp8XddsOon6fF+ogvYhUtsk282dWoiDPikhUQBWJwUQVKiJRgYI8K+bPrNQph+mV6euJSG885/WhZ72nEsczdcwjERWrN+3HL97ajtWb9iOiw3yamaLnMTdzbGcbR2QOvNa10z9mqEIgqgqoQgwaM9JV99lyr53Qr1L79avUgf0qLevLyOe9VZFR5rLjmBJnbCq7DM+Hn2+34JKTq/DUtafh5186GZ89YTysfaZxEQA27D6Mu/9vCz7zw7exatO+jOaPg+hEOpFlCYvmeuCyK2j1BdETjkJVBXrCUbT6gnDZFSya69FsIYmj6SkysO2AH7sP+bG3I4Ddh/zYdsAPiwzcMs+DW+ZNHTJPt8ybilvmZS7fI7F+RzuuX7kBX392I+564X18/dmNuH7lBqzf0T6ibbKRxSJj8TwPFFlC6MiCsKpQEVFji4oqsoTF8zw5uagokPnriUhvPOf1oWe9pxLHM3HMn1rXhFnL38Bdf9iMn7y+DXf9YTNmLX8DT61rSmu6etHzmJs5trONIzIHXuvaORozZAkIRgSCERWhqIpgREUwIiBLSIgZ6aj7bLrXTuhXtfmx+1A39h3uwe5D3djW5ofSr1+lZX1lw3mvyBKK822oLnai1GWHNcnUM+kiSRJqqgpxz+em44Wvn4lF8zyYWJw4jUuLtzfjg/y51+MiyiJzppZh+YJazKgsQCAYQZs/iEAwghmVBVi+oBZzppalMXXpyCs6sUbn6PefqeRJ33wPbv2OdixdXY/GFh/y7RaUF9iRb7egsaULS1fXY/2O9pS2yWY3ne3BkgunodBphaoKhKMCqhpbhX3JhdNw09kevbOYVkY8L4nSiee8PoxT74PH8XR6al0THnplK7yBMGRZgk2RIMsSvIEwHnpla84OpOt5zM0c241zrRFROvFa105NVWFsKo5+v5cAuPOsqKlKXKRSy7rP/nttceSp8OQ9Ki3rK1vOe1mWUJhnxcTiPIwrsMOmwxf3hXlWXH7aRDx9w6fwk8tnYt7x46DIEkrybbjwxIqM5kUS/d8dyGE+nw+FhYXwer1wu/k6EBmHqgo0NPvQEQihxGlDTZVb828dVVXg+pUb0Njiw/gCO4JHnmiyyDLsFgkHukKYUVmAp2+YDVmWUspTJvI90rJVuB0J83cJIdDqC2J6hQuAhI9ak2/Tt/zZLBJRsWZLC/Z3BjChyIn5Mytz8im1ZIxyXhqFkWOfkfOWTXjO6yPT9T7SOK61SETFrOVvwBsIw2aRIEufxBVVxJ6MLnRasXHpeTkbc/S81swc23OtjTN67DN6/ih35dq1nml9+wnlLht8vVGEoyqsigy3Q0GbP5y0nzDWuk/lftxo99oJ/Sq3HcFwn36VVcIBX/J+lZbnajae94FQBN6e2NQ3eukNR9EZCGv2ZUOqsc+iSWpENCayLKF2YuHwG45BQ7MPTW1+FDttkGUZeTYAUOKfFzmtaGrzo6HZh9qJhSnlKRP5TkXfsvVfAEOSJBQ5rfiotQsSpCG36Vv+bGaxyFhw6gS9s6Ebo5yXRJnCc14fma73kcZxra3Z0oKunjAsSuIAOgDIkgyLoqKrJ4w1W1pyNgbpea2ZObazjSMyB17rY9O3n6AoCorzlYTPi5xI2k8Ya92ncj9utHvthH6VNLJ+lZbnajae906bBU6bBb3hKHw9YfiDkYznodRlxwlVma83czy+QEToCIQQjgrYksxlZVdkhFWBjkAowzkbu5TKFhUIRdWcLD8REeU+veP4/s4AVADJHo6SpdgL0Ps7A2lJn4iIiJLTs5+gdx9lNLIxz0bjsCoodztQXeJEgcM64AuUXMRBdCKTKHHaYFUkhKLqoJ8HoyqssoQSpy3DORu7lMqmSLApck6Wn4iIcp/ecXxCkRMyADXJRJCqiM25OqHImZb0iYiIKDk9+wl691FGIxvzbFRWRca4AjuOKXGiyGnL+GKfmcRBdCKTqKlyw1PuwuFAGP2XQhBCoDMQhqfchZqq7Jv7MJWyTa8owLSKgpwsPxER5T694/j8mZUoyLMiEhVQReINpypURKICBXlWzJ9ZmZb0iYiIKDk9+wl691FGIxvzbHRHF/usLnaiNN8Oi5x7Q865VyKiYaiqQP0+L+q2HUT9Pi/UZI9UGcxY8y3LEhbN9cBlV9Dq60VnIARvTwidgRBafb1w2RUsmuuJL2KRTfWUWLYgesJRqKpATziKVl8QLruCW+ZNxS3zht6mb/mB1Oogm+qJiCjXmKkN7hvrWry9OBwIwdcTxuFACC3egXFcaxaLjMXzPFBkCcGIQCgSjf8LRgQUWcLieZ60L3ZppmNuJKx3MjKen+lnhjpOVsZsKXsq98Tp6ifomfZojSXP2XJOpMtw5ZdlCYVOK6pL8lBWYIc1yZQ52UgS/b9yyWFcaZzW72jHiromNLX5EY4KWBUJnnIXFs31aLaqbzpome+n1jXhsbVN6OoJQyD26nVBnhWL53lw09kezdPLpIR8qwJWeWC+U9lmwHZJ6iBb64nMxcixz8h5I+MzaxvcN46riD0R0z+Op9ONv9mANz86OOD3504fh199ZXZa0zbrMdcb611bRo99Rs9ffzw/088MdZysjGcfV4Z129uzquyp3u/mWtqjNdI8m+F6GMpoy+8PRtAZCCEUGXz6nJHKt1sw3u3QZF9A6rGPg+hkGut3tGPp6nr4gxEUO23x+bEPB8Jw2RUsX1BryEZPy3wf3VdXbxhOmwWyJEEVAoFQFAUOC5YvqAWArKyno1RVoKHZh45ACCVOG2qq3AO+PR5um1TqHMjueiLzMHLsM3LeyNiyNaaPVd9y51kVSBIgBNATjsJlt6S93E+ta8JDr2xFVBUJC4yqIvYK75ILp6VtIN+sx1xvrHftGT32GT1/ffH8TD8z1HGyMh7wBREIRZBvV1Be4MiqsqdyT5yLaY9Wqnk2w/UwFC3KHwhF0BkIozccHVNe9BpEt2iWIpGBqarAirom+IMRVLgd8VWDHbKCCreMVl8QK+qacMaUUkM18Frmu+++KgvzElZOLswTaPUF8fjaHQCkrKunvmRZQu3EwlFvk0qdP762CYDI6noiIspW2RrTxypZuQGgUIi0lzsSUfHY2iZEVQGbRYIsffJqripUhCICj61twg1zJms+pYtZj7neWO9kZDw/088MdZysjHZJRlRVEVUFIlEBu1WGBClryp7KPXEupj1aqeTZDNfDULQqv9NmgdNmQW84isOBEHpCYxtMz7TcmZiGaAgNzT40tflR7LQl3HQCgCRJKHJa0dTmR0OzT6ccDk7LfKeyr49au7C1tSvr6klLqdTT1tYufGTyeiIi0ku2xvSx0rvca7a0oKsnDIuSOIAOALIkw6JI6OoJY82WFs3T1rvsZsV6JyPj+Zl+ZqjjZGXsDasIRVVYFAmhqIre0CdTUORK2WlkzHA9DEXr8jusCioL81BVlId8e/Y8381BdDKFjkAI4aiALcmCBnZFRlgV6AiEMpyzoWmZ75T2FRUIRdWsqyctpVJPoaiKcCT7ziciolyQrTF9rPQu9/7OQGwO9iQPF8kSII5spzW9y25WrHcyMp6f6WeGOk5WxoiqQogjsU3Efu4rF8pOI2OG62Eo6Sq/w6pgvNuBicVOuByWAQP0RsNBdDKFEqcN1iPfIg8mGFVhlSWUOG0ZztnQtMx3SvtSpPi8VmNNL1ulUk82RYbVkn3nExFRLsjWmD5Wepd7QpETMmLznw9GFbHFyicUOTVPW++ymxXrnYyM52f6maGOk5XRIsuQpCOxTYr93FculJ1GxgzXw1DSXX6bRUZ5gQMTi/PgzrMadjCdg+hkCjVVbnjKXTgcCKP/WrpCCHQGwvCUu1BTZazFc7TMdyr7ml5RgGkVBbrUk6oK1O/zom7bQdTv80JNdpeeZqnU07SKAkzXqZ5ymVHOASIytmyN6WPVt9yqqqInFEVXbxg9oShUVU17uefPrERBnhWRqIAqEm+gVKEiEhUoyLNi/sxKzdNOKLvoV3aR/rKblVmvNcoOPD/Tzwx1nKyMDqsMmyIjcuTJW4ftk6GzbC4777dGL1uuh3Qd40yV36rIKHPZcUyJE0VOG2SDDaZzEJ1MQZYlLJrrgcuuoNUXRE84ClUV6AlH0eoLwmVXsGiux3ALQGiZ71T2dcu8qbhlXubraf2Odly/cgO+/uxG3PXC+/j6sxtx/coNWL+jXdN0UpFaPXlwy7ypWXc+GZmRzgEiMrZsjeljdbTcigxsa/Nj96Fu7Dvcg92HurGtzQ9FRlrLbbHIWDzPA0WWEIoIRFQ1NniuxhYVVWQJi+d5NF9UFOhX9gN+7D7kx96OAHYf8mPbAT8saS67WZn1WqPswPMz/cxQx8nK2BtRocgyFFmCRZHQG1azvuy83xqbbLge0nmMM11+RZZQkm/DMSVOlOTboBjkWpNE/68QcpjP50NhYSG8Xi/c7uz6xpC0sX5HO1bUNaGpzY+wKmCVJXjKXVg014M5U8v0zl5SWuY7lX1lsp7W72jH0tX18AcjKHba4tPJHA6E4bIrWL6gVpdjY7R6ymVGPQdyhZFjn5HzRsZnxjZ4/Y523PHCZnR0hyCEgDjymrkkxW40fnrFyWkv+1PrmvDY2iZ09YQhEJvCpSDPisXzPLjpbE/a0k0s+ye/lyRkrOxmZcZrLZ2MHvuMnr/+eH6mnxnqOFkZzz6uDOu2t2d92Xm/pR2jXg+ZOsZ6lV8IAV9PBN6eMCKqiny7BePdDs32n2rs4yA6mY6qCjQ0+9ARCKHEaUNNlTsrvkHWMt+p7CsT9aSqAtev3IDGFh8q3I6Eea+EEGj1BTGjsgBP3zBbl2NklHrKZUY/B3KBkWOfkfNG2cFMbXDf9nK8245gOPY0uEWWYbdKOOALZay9jERUrNnSgv2dAUwocmL+zMq0PIF+VELZC+wIRvqU3SLhQFfmym5WZrrW0s3osc/o+RsMz8/0M0MdJytjtped91vaM9o5keljrGf5hRDoCkYQjqgoddk122+qsc+iWYpEWUKWJdROLNQ7GyOmZb5T2Vcm6qmh2YemNj+KnbYBC0dIkoQipxVNbX40NPt0OWZGqadcZvRzgIiMzUxtcN/2UpZk5NkAQIl/nsn20mKRseDUCWlNo6+Essv6lt2szHStUfbh+Zl+ZqjjZGXM9rLzfkt7RjsnMn2M9Sy/JElwO6y6pA1wTnQi0lFHIITwkcVaBmNXZIRVgY5AKMM5o0zhOUBElBozt5dmLjsREdFYMIbmPh7jzOEgOhHppsRpg1WREIqqg34ejKqwyhJKnLYM54wyhecAEVFqzNxemrnsREREY8EYmvt4jDOHg+hkOqoqUL/Pi7ptB1G/zwtVNc2yALoYqr5rqtzwlLtwOBBG/+UZhBDoDIThKXehpio75mOkkeM5QESUmr7tpaqq6AlF0dUbRk8oClVVc7q9ZKzQH/vPRETZaaz9B7b/xsd+UuZwTnQylYSVhKMCVsUYKynnquHqW5YlLJrrwdLV9Wj1BVHktMKuyAhGY8HcZVewaK6HC5zkMJ4DRESpOdpe3vHCZmxr86PvPZIkASX5tpxtLxkr9MX+MxFR9hpL/4Htf3ZgPylz+CQ6mcb6He1YuroejS0+5NstKC+wI99uQWNLF5aursf6He16ZzGnpFrfc6aWYfmCWsyoLEAgGEGbP4hAMIIZlQVYvqCWwdkEeA4QEY2GOPK0kTmeCGOs0Af7z0REuSa1/gPb/+zCflJm8El0MgVVFVhR1wR/MIIKtyO+YrFDVlDhltHqC2JFXRPOmFLKb+c0MNL6njO1DGdMKUVDsw8dgRBKnDbUVLl5LEyE5wAR0dCOxtaoKnD8eBeCYYGIqsIiy7BbJRzwhXK+L8NYkVnsPxMRZb/R9B/Y/mcn9pPSj4PoZAoNzT40tflR7LTFA8BRkiShyGlFU5sfDc0+1E4s1CmXuWM09S3LEuve5HgOEBEl1ze2ypKMPBsAKPHPzdKXYazIHPafiYiy32j6D2z/sxf7SenF6VzIFDoCIYSjAjZl8FPersgIqwIdgVCGc5abWN9ERETaYmylTOM5R0SU/UbTlrP9JxocB9HJFEqcNlgVCaGoOujnwagKqyyhxGnLcM5yE+ubiIhIW4ytlGk854iIst9o2nK2/0SD4yA6mUJNlRuechcOB8JHFtH4hBACnYEwPOUu1FS5dcphbmF9ExERaYuxlTKN5xwRUfYbTVvO9p9ocFkxiL57927ceOONmDx5MvLy8uDxeHD//fcjFOKrI2aiqgL1+7yo23YQ9fu8UNWhV5PuS5YlLJrrgcuuoNUXRE84ClUV6AlH0eoLwmVXsGiuhwsuaCSxvnvRGQjB2xNCZyCEVl9vWut7LOdJOveVjcxefiKioWS6jTRSXyYUiuLRN7bjzhc249E3tiMUiqY9TSMwW1w00jlHRNnFbO1lOo21LkfTlo+l/eexzx3JjqWZj3FWLCz60UcfQVVV/PKXv8TUqVPxwQcf4KabbkJ3dzd+/OMf6509yoD1O9qxoq4JTW1+hKMCVkWCp9yFRXM9mDO1LKV9zJlahuULauP78aoCVlnCjMqCEe2HUjNnahmuOf0YPLa2Cc2dPRAAJAAFeVZcc/oxaalvLc6TdOwrG5m9/EREQ9GrjTRCX+beVVvw+437EOlzw/ToW9tx5ayJeOCymWlPXy9mjYtGOOeIKLuYtb1MB63qcjRt+Wj+hsc+dyQ7lmcfV4Z129tNe4wl0f/djCzxox/9CCtWrMDOnTtT/hufz4fCwkJ4vV643XztJFus39GOpavr4Q9GUOy0wabICEVVHA6E4bIrWL6gdkQXq6oKNDT70BEIocRpQ02Vm0/QpMHR49bVG4bTZoEsSVCFQCAURYHDMuLjlmp6WpwnWp9z2cbs5c81Ro59Rs4bUTJGaCP16svcu2oLntuwN+nn18yuzsmBdCMcc72x/6wdo8c+o+ePjI3tpXbSUZejactT/Rse+9yR7Fge8AURCEWQb1dQXuDIqWOcauzLiulcBuP1elFSUqJ3NijNVFVgRV0T/MEIKtwOOKwKZFmCw6qgwm2HPxjFirqmEU/tUjuxEHOPH4faiYW8AUiDvsetsjAPRU4b3HlWFDltqCx0jOq4pZreWM+TdJxz2cTs5SciGopR2kg9+jKhUBS/37gv/rMkffLvqN9v3JdzU7sY5Zjrjf1nIhoO20vtpKsuR9OWp/I3PPa5I9mxtFtkRFUVUVUgEhWwW2VTHuOsHERvamrCz3/+cyxcuHDI7YLBIHw+X8I/yi4NzT40tflR7LRBkhIba0mSUOS0oqnNj4ZmHlsjyfRx0zI9s59zZi8/pRfjMmU7M7eRT6zbGZ/CpV/R4z9HVIEn1qX+lmg2MPMxJ3NgbCatsL3UTrbVZbbll5JLdix7wypCURUWRUIoqqI3pMY/M9Mx1nUQfdmyZZAkach/GzduTPib5uZmXHjhhbj88svxta99bcj9P/jggygsLIz/q66uTmdxKA06AiGEowI2ZfBT1a7ICKsCHQEuMmskmT5uWqZn9nPO7OWn9GJcpmxn5jby445uTbfLFmY+5mQOjM2kFbaX2sm2usy2/FJyyY5lRFUhBCBLgBCxn/syyzHWdRD91ltvRWNj45D/TjzxxPj2zc3NOOecc3DmmWfiySefHHb/3/72t+H1euP/9u5NPocjGVOJ0wbrkW+6BhOMqrDKEkqctgznjIaS6eOmZXpmP+fMXn5KL8ZlynZmbiMnleRrul22MPMxJ3NgbCatsL3UTrbVZbbll5JLdiwtsgxJAlQRewPRIicOJ5vlGFv0TLysrAxlZalNOr9//36cc845OO2007By5UrI8vDj/3a7HXa7fazZJB3VVLnhKXehsaULFW454XUSIQQ6A2HMqCxATRUXvdFDskVGMn3ctEzP7Oec2ctP6cW4TNmubxs53i0hGBaIqCossgy7VcrpNnLh2VPw6FvbEVEFhEic0kUcmf7SIktYePYUfTKYJoyLlOsYm0krbC+1M9a6zPRi0Dz2uSPZsXRYZdgUGYFQFE6bAoftkzFZMx3jrJgTvbm5GfPmzUN1dTV+/OMf4+DBg2htbUVra6veWaM0k2UJi+Z64LIraPUF0ROOQlUFesJRtPqCcNkVLJrr4eJGOli/ox3Xr9yArz+7EXe98D6+/uxGXL9yA9bvaM/4cdMyPbOfc2YvPxHRUI62kYoMbDvgx+5DfuztCGD3IT+2HfDDIiNn20ibTcGVsybGfxbik39HXTlrImw2RYfcpQ/jIhFRatheamcsdTnUfboR80vGkuxY9kZUKLIMRZZgUST0hlVTHmNJCGH4pVN/85vf4IYbbhj0s5Fk3+fzobCwEF6vF253bn87kmvW72jHiromNLX5EVYFrLIET7kLi+Z6MGdqam8zkHbW72jH0tX18AcjKHbaYFNkhKIqDgfCcNkVLF9QizlTyzJ+3LRMz+znnNnLn0uMHPuMnDeiZNbvaMcdL2xGR3coYQBZkoCSfBt+esXJOd1O3rtqC36/cV98kVEg9gT6lbMm4oHLZuqYs/RiXCStGD32GT1/ZHxsL7Uz0rpM9T7dKPkl40p2LM8+rgzrtrfn3DFONfZlxSC6VtghyG6ZfiWJBqeqAtev3IDGFh8q3I4Br2q1+oKYUVmAp2+YDVmWMn7ctEzP7Oec2cufK4wc+4ycN6LB9I2B4wvsCEb6TOdikXCgK5QQA3NVKBTFE+t24uOObkwqycfCs6fk3BPog2FcJC0YPfYZPX+UHdheaifVuhzpfbre+SXjS3Ysc/EYpxr7dJ0TnWgkZFlC7cRCvbNheg3NPjS1+VHstCUEZgCQJAlFTiua2vxoaPahdmJhxo+blumZ/Zwze/mJiPrrGwNlWUaeDQA+GTzuHwNzlc2m4LbzjtM7GxnHuEhElBq2l9pJtS5Hep+eLjz2uSPZsTTzMc6KOdGJyDg6AiGEowI2ZfDmw67ICKsCHYFQhnNGRESUXoyBREREZETsoxClHwfRiWhESpw2WBUJoag66OfBqAqrLKHEactwzoiIiNKLMZCIiIiMiH0UovTjdC5ENCI1VW54yl1obOlChVseMNdaZyCMGZUFqKnSfg7FXJx766hcLhsR5TYztV96xkAiyjwztW9ElN2yoY/CNtW8cuXYcxCdiEZEliUsmuvB0tX1aPUFUeS0wq7ICEZVdB5Z9XvRXI/mDWLC6tBRAauSG6tAA7ldNiLKbWZrv/SKgUSUeWZr34gouxm9j8I21bxy6dhLQgihdyYyhSuNE2knoSFUBaxy+hrC9TvasXR1PfzBCIqdNtgUGaGoisNHOgPLF9RmXeN7VC6XjYzByLHPyHmj4Zm5/cpkDCSizEtn+2b02Gf0/BHR0IzYRzFzn9HssuXYpxr7+CQ6EY3KnKllOGNKadpfyVFVgRV1TfAHI6hwO+KvpTlkBRVuGa2+IFbUNeGMKaVZ9+RfLpeNiHKb2duvTMVAIso8s7dvRJTdjNZHYZtqXrl47DmITkSjJssSaicWpjWNhmYfmtr8KHbaEuZ1AwBJklDktKKpzY+GZl/a86K1XC4bEeU2tl+ZiYFElHls34go2xmpj8I21bxy8djLemeAiGgoHYEQwlEBmzJ4c2VXZIRVgY5AKMM5G7tcLhsR5Ta2X0SUq9i+ERFph22qeeXisecgOhEZWonTBqsiIRRVB/08GFVhlSWUOG0ZztnY5XLZiCi3sf0iolzF9o2ISDtsU80rF489B9GJyNBqqtzwlLtwOBBG/3WQhRDoDIThKXehpir7Fj7K5bIRUW5j+0VEuYrtGxGRdtimmlcuHnsOohORocmyhEVzPXDZFbT6gugJR6GqAj3hKFp9QbjsChbN9WTNQhR95XLZ0kVVBer3eVG37SDq93mhqmL4PyIizbH9Isosxr/MYftGNHZss+gotqnmlYvHXhL9vw7IYT6fD4WFhfB6vXC7s+ebDiIC1u9ox4q6JjS1+RFWBayyBE+5C4vmejBnapne2RuTXC6blhLqKSpgVVhPqTBy7DNy3ig1bL+I0o/xTx/pat+MHvuMnj8yPrZZNBj2Gc0rG459qrGPg+hElDVUVaCh2YeOQAglThtqqtxZ9a3lUHK5bFpYv6MdS1fXwx+MoNhpg02REYqqOBwIw2VXsHxBrWECsNEYOfYZOW+UOrZfROnD+KevdLRvRo99Rs8fGRvbLBoK+4zmZfRjn2rss2QwT0REYyLLEmonFuqdjbTI5bKNlaoKrKhrgj8YQYXbAUmKBVuHrKDCLaPVF8SKuiacMaXUUIGYyCzYfhGlB+Of/ti+EaWObRYNh22qeeXKseec6EREZGgNzT40tflR7LTFO+NHSZKEIqcVTW1+NDT7dMohERGR9hj/iCibsM0iolzHQXQiIjK0jkAI4aiATRk8ZNkVGWFVoCMQynDOiIiI0ofxj4iyCdssIsp1HEQnIiJDK3HaYFUkhKLqoJ8HoyqssoQSpy3DOSMiIkofxj8iyiZss4go13FOdCIalFYLPxh9AQkyvpoqNzzlLjS2dKHCLSe8HiqEQGcgjBmVBaip4uJXRJQ5jG/6MFO9M/4RUTZhmzU8M8UwMhaee9rgIDoRDbB+RztW1DWhqc2PcFTAqkjwlLuwaK5nRKupa7UfMjdZlrBorgdLV9ej1RdEkdMKuyIjGFXRGQjDZVewaK6HnQAiyhjGN32Yrd4Z/4gom7DNGprZYhgZB8897UhCCKF3JjLF5/OhsLAQXq8Xbrd5v/0kGsr6He1Yuroe/mAExU4bbIqMUFTF4SMdn+ULalNqaLXaD9FRCcFfFbDKDP6pMHLsM3LeiJJhfNOHmeud8S+3GD32GT1/ZHxsswYycwwjffHcS02qsY9PohNRnKoKrKhrgj8YQYXbEX8FzyErqHDLaPUFsaKuCWdMKR3yCQKt9kPU15ypZThjSilfQyMi3TC+6cPs9c74R0TZhG1WIrPHMNIPzz3tcRCdiOIamn1oavOj2GlLmMMOACRJQpHTiqY2PxqafaidWJj2/RD1J8sSzxki0g3jmz5Y74x/RJRd2GZ9gjGM9MJzT3uy3hkgIuPoCIQQjgrYlMGbBrsiI6wKdARCGdkPERGRkTC+6YP1TkRE2YoxjPTCc097HEQnorgSpw1WRUIoqg76eTCqwipLKHHaMrIfIiIiI2F80wfrnYiIshVjGOmF5572OIhOZACqKlC/z4u6bQdRv88LVU3ver/J0qupcsNT7sLhQBj91xwWQqAzEIan3IWaqqEXGdJqP0REREbC+KaPvvWuChU9oSi6esPoCUWhCpX1TmmT6T46EeUes8UwtpvGwX6r9jgnOpHOElYvjwpYlfSuXj5ceovmerB0dT1afUEUOa2wKzKC0Vhwd9kVLJrrGXbRCVmWNNkPERGRkTC+6eNovd/xwmZsO+CHEAJCAJIUm9OzNN/GeifNZbqPTkS5yUwxjO2msbDfqj0+iU6ko/U72rF0dT0aW3zIt1tQXmBHvt2CxpYuLF1dj/U72jOe3pypZVi+oBYzKgsQCEbQ5g8iEIxgRmUBli+oTTn4abUfIiIiI2F8MwLpyAJZsZs+PuNGWst0H52IzCQ3YxjbTWNiv1VbfBKdSCeqKrCirgn+YAQVbkd8tWSHrKDCLaPVF8SKuiacMaVUk28GR5LenKllOGNKKRqafegIhFDitKGmyj3ifGi1HyIiIiNhfMuso32YqCpwfLkLwYhARFVhkWXYLRIOdIU07TORuWW6j05Euc0MMYztprGx36odDqIT6aSh2YemNj+KnbZ4kDlKkiQUOa1oavOjodmH2omFGU9PliVN0tVqP0REREbC+JY5ffswsiwjzwYASvxzrftMZG6Z7qMTUW4zQwxju2l87Ldqg9O5EOmkIxBCOCpgUwa/DO2KjLAq0BEIZWV6RERERFpgH4YyiecbEWnJDG2KGcpIBHAQnUg3JU4brIqEUFQd9PNgVIVVllDitGVlekRERERaYB+GMonnGxFpyQxtihnKSARwEJ1INzVVbnjKXTgcCEOIxOVEhBDoDIThKXehpsqdlekRERERaYF9GMoknm9EpCUztClmKCMRwEF0yjGqKlC/z4u6bQdRv88LVTXuWteyLGHRXA9cdgWtviB6wlGoqkBPOIpWXxAuu4JFcz2aLfaQ6fSIiMgcsin2UnZiH4YyiecbEWnJDG2KGcqYq9iPHxlJ9P+aKIf5fD4UFhbC6/XC7eY3YLlm/Y52rKhrQlObH+GogFWR4Cl3YdFcD+ZMLdM7e0kl5FsVsMrpzXem0yMifRk59hk5b5SabI29lJ3Yh6FMStf5ZvTYZ/T8EWUrM8QwM5Qxl7Af/4lUYx8H0SknrN/RjqWr6+EPRlDstMGmyAhFVRwOhOGyK1i+oNbQjYCqCjQ0+9ARCKHEaUNNlTut39JmOj0i0o+RY5+R80bDy/bYS9mJfRjKpHScb0aPfUbPH1E2M0MMM0MZcwH78YlSjX2WDOaJKC1UVWBFXRP8wQgq3A5IUqyBdsgKKtwyWn1BrKhrwhlTSg3beMuyhNqJhTmbHhER5ZZciL2UndiHoUzi+UZEWjJDm2KGMmY79uNHj3OiU9ZraPahqc2PYqctfvEfJUkSipxWNLX50dDs0ymHREREuYWxl4iIiIgo+7AfP3ocRKes1xEIIRwVsCmDn852RUZYFegIhDKcMyIiotzE2EtERERElH3Yjx89DqJT1itx2mBVJISi6qCfB6MqrLKEEqctwzkjIiLKTYy9RERERETZh/340eMg+iipqkD9Pi/qth1E/T4vVNU067MaTk2VG55yFw4Hwui/Tq4QAp2BMDzlLtRUcWEcIiIiLTD2mhv7wUREZGSMU0TJsR8/elxYdBTW72jHiromNLX5EY4KWBUJnnIXFs31mGr1WqOQZQmL5nqwdHU9Wn1BFDmtsCsyglEVnUdWFl4018MFEYiIiDTC2Gte7AcTEZGRMU4RDY39+NHjk+gjtH5HO5aurkdjiw/5dgvKC+zIt1vQ2NKFpavrsX5Hu95ZNKU5U8uwfEEtZlQWIBCMoM0fRCAYwYzKAixfUMtgSUREpDHGXvNhP5iIiIyMcYooNezHjw6fRB8BVRVYUdcEfzCCCrcjvoqtQ1ZQ4ZbR6gtiRV0TzphSym9sdDBnahnOmFKKhmYfOgIhlDhtqKly81gQERGlCWOvebAfTERERsY4RTQy7MePHAfRR6Ch2YemNj+KnbZ4g3yUJEkoclrR1OZHQ7MPtRMLdcqlucmyxLonIiLKIMZec2A/mIiIjIxximjk2I8fGU7nMgIdgRDCUQGbMni12RUZYVWgIxDKcM6IiIiIiNKH/WAiIjIyxikiSjcOoo9AidMGqyIhFFUH/TwYVWGVJZQ4bRnOGRERERFR+rAfTERERsY4RUTpxulcRqCmyg1PuQuNLV2ocMsJrwgJIdAZCGNGZQFqqtw65pIoc1RVZOX8WdmabyIiIr307QeXuwBfbxThqAqrIsPtUNgPJiIiXeXqeA3vXbMLj1du4yD6CMiyhEVzPVi6uh6tviCKnFbYFRnBqIrOQBguu4JFcz28QMgU1u9ox4q6JjS1+RGOClgVCZ5yFxbN9Rh6JedszTcREZGejvaDFz+/CY2tfog+n0kAipxW9oOJiEg3uThew3vX7MLjlfs4ncsIzZlahuULajGjsgCBYARt/iACwQhmVBZg+YJaXhhkCut3tGPp6no0tviQb7egvMCOfLsFjS1dWLq6Hut3tOudxUFla76JiIiMoKHZC19POGEAHQAEAF9PGA3NXj2yRUREBCC3xmt475pdeLzMgU+ij8KcqWU4Y0opX9EgU1JVgRV1TfAHI6hwO+KvyTlkBRVuGa2+IFbUNeGMKaWGuiayNd9ERERGEImoeGxtE1QB2C0SAAlCALFwKhCKCDy2tgk3zJkMi4XP6RARkT5yYbyG967ZhcfLPNjDHSVZllA7sRBzjx+H2omFvBDINBqafWhq86PYaUuYZw4AJElCkdOKpjY/Gpp9OuVwcNmabyIiIiNYs6UFXT1hWBQJsiRDliQosgRZiv1sUSR09YSxZkuL3lklIiKTy/bxGt67ZhceL/PgIDoRjUhHIIRwVMCmDN582BUZYVWgIxDKcM6Glq35JiIiMoL9nQGoAJKNQ8hSbFqX/Z2BTGaLiIgo5/DeNbvweJkHB9GJaERKnDZYFQmhqDro58GoCqssocRpy3DOhpat+SYiIjKCCUVOyADU/hOiH6GK2AKjE4qcmcwWERFRzuG9a3bh8TIPDqIT0YjUVLnhKXfhcCAMIRLvpIUQ6AyE4Sl3oabKrVMOB5et+SYiIjKC+TMrUZBnRSQqoIrEm0RVqIhEBQryrJg/s1KnHBIREeUG3rtmFx4v8+AgOhGNiCxLWDTXA5ddQasviJ5wFKoq0BOOotUXhMuuYNFcj+HmncvWfBMRERmBxSJj8TwPFFlCKCIQUdXY4LmqIhQRUGQJi+d5uKgoERHRGPHeNbvweJkHe7lENGJzppZh+YJazKgsQCAYQZs/iEAwghmVBVi+oBZzppbpncVBZWu+iYiIjOCmsz1YcuE0FDqtUFWBcFRAVQUKnVYsuXAabjrbo3cWiYiIcgLvXbMLj5c5SKL/uwY5zOfzobCwEF6vF243X6MgGitVFWho9qEjEEKJ04aaKndWfLuarfkmGg0jxz4j542IkotEVKzZ0oL9nQFMKHJi/sxKPoFOlCKjxz6j54/IbHjvml14vLJTqrHPksE8EVGOkWUJtRML9c7GiGVrvomIiIzAYpGx4NQJemeDiIgo5/HeNbvweOU2PjJCRERERERERERERJQEB9GJiIiIiIiIiIiIiJLgIDoRERERERERERERURJZM4h+8cUX45hjjoHD4UBlZSWuvfZaNDc3650tIiIiIiIiIiIiIsphWTOIfs455+CFF17A1q1b8cc//hFNTU34z//8T72zRUREREREREREREQ5zKJ3BlJ1xx13xP9/0qRJuOeee3DppZciHA7DarXqmDMiIiIiIiIiIiIiylVZ8yR6Xx0dHXjuuecwZ84cDqATERERERERERERUdpk1SD6kiVLkJ+fj9LSUuzZswd//vOfh9w+GAzC5/Ml/CMiIiJ9MC4TEREZC2MzERFRanQdRF+2bBkkSRry38aNG+Pb33333Xjvvffw2muvQVEUXHfddRBCJN3/gw8+iMLCwvi/6urqTBSLiIiIBsG4TEREZCyMzURERKmRxFCj0GnW3t6O9vb2Ibc59thj4XA4Bvx+3759qK6uxvr163HmmWcO+rfBYBDBYDD+s8/nQ3V1NbxeL9xu99gyT0RElAV8Ph8KCwsNEfsYl4mIyOyMFJcBxmYiIqJUY7OuC4uWlZWhrKxsVH97dOy/b8Dvz263w263j2r/REREpC3GZSIiImNhbCYiIkqNroPoqdqwYQM2bNiAs846C8XFxdi5cye++93vwuPxJH0KnYiIiIiIiIiIiIhorLJiED0vLw+rVq3C/fffj+7ublRWVuLCCy/E7373uxF9a3706XUulkJERGZxNObpOHtbUozLRERkNkaOywBjMxERmU+qsTkrBtFra2vx1ltvjXk/XV1dAMDFUoiIyHS6urpQWFiodzYSMC4TEZFZGTEuA4zNRERkXsPFZl0XFs00VVXR3NyMgoICSJI05LZHF1TZu3cvF1TJANZ35rHOM4v1nVms708IIdDV1YWqqirIsqx3dhKMJC6nyqzH3qzlBsxbdrOWGzBv2c1abiC3ym7kuAxoH5tz6diNhpnLb+ayA+Yuv5nLDpi7/Nla9lRjc1Y8ia4VWZYxceLEEf2N2+3OqgOf7Vjfmcc6zyzWd2axvmOM+KQbMLq4nCqzHnuzlhswb9nNWm7AvGU3a7mB3Cm7UeMykL7YnCvHbrTMXH4zlx0wd/nNXHbA3OXPxrKnEpuN99U3EREREREREREREZFBcBCdiIiIiIiIiIiIiCgJDqInYbfbcf/998Nut+udFVNgfWce6zyzWN+Zxfo2L7Mee7OWGzBv2c1absC8ZTdruQFzlz3bmf3Ymbn8Zi47YO7ym7nsgLnLn+tlN9XCokREREREREREREREI8En0YmIiIiIiIiIiIiIkuAgOhERERERERERERFREhxEJyIiIiIiIiIiIiJKwtSD6CtWrMDMmTPhdrvhdrtx5pln4q9//Wv8cyEEli1bhqqqKuTl5WHevHloaGjQMce55cEHH4QkSbj99tvjv2Oda2vZsmWQJCnhX0VFRfxz1rf29u/fjy9/+csoLS2F0+nEySefjHfffTf+OetcW8cee+yAc1ySJCxevBgA69tMhrv2clUkEsF9992HyZMnIy8vD1OmTMH3v/99qKqqd9Y0t27dOsyfPx9VVVWQJAl/+tOfEj7P1et9qHKHw2EsWbIEtbW1yM/PR1VVFa677jo0Nzfrl2ENDXfM+/r6178OSZLws5/9LGP5S5dUyt3Y2IiLL74YhYWFKCgowBlnnIE9e/ZkPrMaG67sfr8ft956KyZOnIi8vDzMmDEDK1as0CezlJLHH38ckydPhsPhwGmnnYa//e1vemcpLcwaox588EF86lOfQkFBAcrLy3HppZdi69atCdvkatkBjin1ZbbxHbOPtZh13MPUg+gTJ07ED37wA2zcuBEbN27Ef/zHf+CSSy6JH9gf/vCHePjhh/GLX/wC77zzDioqKnD++eejq6tL55xnv3feeQdPPvkkZs6cmfB71rn2ampq0NLSEv9XX18f/4z1ra3Dhw/j05/+NKxWK/7617/iww8/xE9+8hMUFRXFt2Gda+udd95JOL9ff/11AMDll18OgPVtFqlce7nqoYcewhNPPIFf/OIXaGxsxA9/+EP86Ec/ws9//nO9s6a57u5unHTSSfjFL34x6Oe5er0PVe5AIIBNmzbhO9/5DjZt2oRVq1Zh27ZtuPjii3XIqfaGO+ZH/elPf8K///1vVFVVZShn6TVcuZuamnDWWWdh+vTpWLt2Ld5//3185zvfgcPhyHBOtTdc2e+44w688sor+O1vf4vGxkbccccd+MY3voE///nPGc4ppeL3v/89br/9dtx7771477338JnPfAaf+9zncuILn/7MGqPq6uqwePFi/Otf/8Lrr7+OSCSCz372s+ju7o5vk6tlBzimdJRZx3fMOtZi6nEPQQmKi4vF//t//0+oqioqKirED37wg/hnvb29orCwUDzxxBM65jD7dXV1ieOOO068/vrrYu7cueKb3/ymEEKwztPg/vvvFyeddNKgn7G+tbdkyRJx1llnJf2cdZ5+3/zmN4XH4xGqqrK+TWS4ay+Xff7znxdf/epXE3532WWXiS9/+cs65SgzAIjVq1fHfzbL9d6/3IPZsGGDACA+/vjjzGQqQ5KVfd++fWLChAnigw8+EJMmTRI//elPM563dBqs3FdeeWXOX+NCDF72mpoa8f3vfz/hd6eeeqq47777MpgzStXs2bPFwoULE343ffp0cc899+iUo8wwa4wSQoi2tjYBQNTV1QkhzFX2o8w2pmTW8R0zj7WYedzD1E+i9xWNRvG73/0O3d3dOPPMM7Fr1y60trbis5/9bHwbu92OuXPnYv369TrmNPstXrwYn//853Heeecl/J51nh7bt29HVVUVJk+ejKuuugo7d+4EwPpOhxdffBGzZs3C5ZdfjvLycpxyyil46qmn4p+zztMrFArht7/9Lb761a9CkiTWt4kMd+3lsrPOOgtvvvkmtm3bBgB4//338fe//x0XXXSRzjnLLF7vn/B6vZAkyRRvYqiqimuvvRZ33303ampq9M5ORqiqipdffhnHH388LrjgApSXl+P0008fcqqbXHLWWWfhxRdfxP79+yGEwNtvv41t27bhggsu0Dtr1E8oFMK7776b0C4DwGc/+1nTtctmilFerxcAUFJSAsBcZTfrmJKZx3fMOtZi5nEP0w+i19fXw+VywW63Y+HChVi9ejVOOOEEtLa2AgDGjx+fsP348ePjn9HI/e53v8OmTZvw4IMPDviMda69008/Hc888wxeffVVPPXUU2htbcWcOXNw6NAh1nca7Ny5EytWrMBxxx2HV199FQsXLsRtt92GZ555BgDP8XT705/+hM7OTnzlK18BwPo2k+GuvVy2ZMkSfOlLX8L06dNhtVpxyimn4Pbbb8eXvvQlvbOWUbzeY3p7e3HPPffg6quvhtvt1js7affQQw/BYrHgtttu0zsrGdPW1ga/348f/OAHuPDCC/Haa69hwYIFuOyyy1BXV6d39tLu0UcfxQknnICJEyfCZrPhwgsvxOOPP46zzjpL76xRP+3t7YhGo6ZvlwHzxCghBL71rW/hrLPOwoknngjAHGU385iSmcd3zDzWYuZxD4veGdDbtGnTsHnzZnR2duKPf/wjrr/++oQOqCRJCdsLIQb8jlKzd+9efPOb38Rrr7025JyNrHPtfO5zn4v/f21tLc4880x4PB48/fTTOOOMMwCwvrWkqipmzZqF5cuXAwBOOeUUNDQ0YMWKFbjuuuvi27HO0+NXv/oVPve5zw2YE5f1nftSvfZy0e9//3v89re/xfPPP4+amhps3rwZt99+O6qqqnD99dfrnb2MM/P1Hg6HcdVVV0FVVTz++ON6Zyft3n33XTzyyCPYtGmTaY4xgPiiwZdccgnuuOMOAMDJJ5+M9evX44knnsDcuXP1zF7aPfroo/jXv/6FF198EZMmTcK6detwyy23oLKycsBTkGQMZm6X+8v1urj11luxZcsW/P3vfx/wWS6X3axjSmYf3zHzWIuZxz1M/yS6zWbD1KlTMWvWLDz44IM46aST8Mgjj8RX1e3/LUlbW9uAb1MoNe+++y7a2tpw2mmnwWKxwGKxoK6uDo8++igsFku8Xlnn6ZOfn4/a2lps376d53gaVFZW4oQTTkj43YwZM+KLJ7HO0+fjjz/GG2+8ga997Wvx37G+zWO4ay+X3X333bjnnntw1VVXoba2Ftdeey3uuOOOQZ8IymVmv97D4TCuuOIK7Nq1C6+//ropnkL/29/+hra2NhxzzDHxfuXHH3+MO++8E8cee6ze2UubsrIyWCwWU7Z5PT09WLp0KR5++GHMnz8fM2fOxK233oorr7wSP/7xj/XOHvVTVlYGRVFM2y73ZYYY9Y1vfAMvvvgi3n77bUycODH+ezOU3axjShzfSWSmsRYzj3uYfhC9PyEEgsEgJk+ejIqKCrz++uvxz0KhEOrq6jBnzhwdc5i9zj33XNTX12Pz5s3xf7NmzcI111yDzZs3Y8qUKazzNAsGg2hsbERlZSXP8TT49Kc/ja1btyb8btu2bZg0aRIAsM7TaOXKlSgvL8fnP//5+O9Y3+Yx3LWXywKBAGQ5sTunKEr8aVWzMPP1fnQAffv27XjjjTdQWlqqd5Yy4tprr8WWLVsS+pVVVVW4++678eqrr+qdvbSx2Wz41Kc+Zco2LxwOIxwOs83LEjabDaeddlpCuwwAr7/+es63y/3lcowSQuDWW2/FqlWr8NZbb2Hy5MkJn+dy2ZMxy5gSx3cSmWmsxdTjHpleydRIvv3tb4t169aJXbt2iS1btoilS5cKWZbFa6+9JoQQ4gc/+IEoLCwUq1atEvX19eJLX/qSqKysFD6fT+ec546+qzcLwTrX2p133inWrl0rdu7cKf71r3+JL3zhC6KgoEDs3r1bCMH61tqGDRuExWIRDzzwgNi+fbt47rnnhNPpFL/97W/j27DOtReNRsUxxxwjlixZMuAz1rc5pHLt5arrr79eTJgwQbz00kti165dYtWqVaKsrEz813/9l95Z01xXV5d47733xHvvvScAiIcffli899574uOPPxZC5O71PlS5w+GwuPjii8XEiRPF5s2bRUtLS/xfMBjUO+tjNtwx72/SpEnipz/9aWYzmQbDlXvVqlXCarWKJ598Umzfvl38/Oc/F4qiiL/97W8653zshiv73LlzRU1NjXj77bfFzp07xcqVK4XD4RCPP/64zjmnwfzud78TVqtV/OpXvxIffvihuP3220V+fn78XiSXmDVGLVq0SBQWFoq1a9cmxKBAIBDfJlfLLgTHlPoz0/iOmcdazDzuYepB9K9+9ati0qRJwmaziXHjxolzzz033tgJIYSqquL+++8XFRUVwm63i7PPPlvU19frmOPc07+RZZ1r68orrxSVlZXCarWKqqoqcdlll4mGhob456xv7a1Zs0aceOKJwm63i+nTp4snn3wy4XPWufZeffVVAUBs3bp1wGesb/MY7trLVT6fT3zzm98UxxxzjHA4HGLKlCni3nvvzYkB1P7efvttAWDAv+uvv14IkbvX+1Dl3rVr16CfARBvv/223lkfs+GOeX+5MoieSrl/9atfialTpwqHwyFOOukk8ac//Um/DGtouLK3tLSIr3zlK6Kqqko4HA4xbdo08ZOf/ESoqqpvximpxx57LH7Pfeqpp4q6ujq9s5QWZo1RyWLQypUr49vkatmF4JhSf2Ya3zH7WItZxz0kIYTQ/PF2IiIiIiIiIiIiIqIcwDnRiYiIiIiIiIiIiIiS4CA6EREREREREREREVESHEQnIiIiIiIiIiIiIkqCg+hERERERERERERERElwEJ2IiIiIiIiIiIiIKAkOohMRERERERERERERJcFBdCIiIiIiIiIiIiKiJDiITkRERERERERERESUBAfRiYiIiIgMbu3atZAkCZ2dnXpnBcceeyx+9rOf6Z0NIiIi0tCyZctw8sknD7nN7t27IUkSNm/enJE8ERkJB9GJiIiIiGiA3/zmNygqKhrw+3feeQc333xz5jNERESmIYTAeeedhwsuuGDAZ48//jgKCwuxZ8+ejOfrj3/8I04//XQUFhaioKAANTU1uPPOOzOej3S466678Oabb8Z//spXvoJLL700YZvq6mq0tLTgxBNPzHDuiPTHQXQiIiIiIkrZuHHj4HQ69c4GERHlMEmSsHLlSvz73//GL3/5y/jvd+3ahSVLluCRRx7BMccco2ma4XB4yM/feOMNXHXVVfjP//xPbNiwAe+++y4eeOABhEKhtKabKS6XC6WlpUNuoygKKioqYLFYMpQrIuPgIDoRjdorr7yCs846C0VFRSgtLcUXvvAFNDU1xT9fv349Tj75ZDgcDsyaNQt/+tOfBrz69eGHH+Kiiy6Cy+XC+PHjce2116K9vV2H0hAREWWOEAI//OEPMWXKFOTl5eGkk07C//3f/8U//8tf/oLjjz8eeXl5OOecc7B79+6Evx/sleuf/exnOPbYYxN+9+tf/xo1NTWw2+2orKzErbfeGv/s4YcfRm1tLfLz81FdXY1bbrkFfr8fQGz6mBtuuAFerxeSJEGSJCxbtgzAwOlc9uzZg0suuQQulwtutxtXXHEFDhw4MCCvzz77LI499lgUFhbiqquuQldX1+grkIiIcl51dTUeeeQR3HXXXdi1axeEELjxxhtx7rnnYvbs2UPeRw53r3p0WpIXXngB8+bNg8PhwG9/+1t8/PHHmD9/PoqLi5Gfn4+amhr85S9/AQC89NJLOOuss3D33Xdj2rRpOP7443HppZfi5z//eUK+16xZg9NOOw0OhwNTpkzB9773PUQikfjnkiThiSeewCWXXIL8/Hz8z//8DwBgxYoV8Hg8sNlsmDZtGp599tmE/UqShBUrVuBzn/sc8vLyMHnyZPzhD39I2Ka+vh7/8R//gby8PJSWluLmm2+Ox3YgFt9nz56N/Px8FBUV4dOf/jQ+/vhjAIl9i2XLluHpp5/Gn//853g/YO3atQnTuaiqiokTJ+KJJ55IyMOmTZsgSRJ27twJAPB6vbj55ptRXl4Ot9uN//iP/8D777+f+olAZBAcRCeiUevu7sa3vvUtvPPOO3jzzTchyzIWLFgAVVXR1dWF+fPno7a2Fps2bcJ///d/Y8mSJQl/39LSgrlz5+Lkk0/Gxo0b8corr+DAgQO44oordCoRERFRZtx3331YuXIlVqxYgYaGBtxxxx348pe/jLq6OuzduxeXXXYZLrroImzevBlf+9rXcM8994w4jRUrVmDx4sW4+eabUV9fjxdffBFTp06Nfy7LMh599FF88MEHePrpp/HWW2/hv/7rvwAAc+bMwc9+9jO43W60tLSgpaUFd91114A0hBC49NJL0dHRgbq6Orz++utoamrClVdembBdU1MT/vSnP+Gll17CSy+9hLq6OvzgBz8YcZmIiMhcrr/+epx77rm44YYb8Itf/AIffPABHnnkkWHvI4e6V+1ryZIluO2229DY2IgLLrgAixcvRjAYxLp161BfX4+HHnoILpcLAFBRUYGGhgZ88MEHSfP76quv4stf/jJuu+02fPjhh/jlL3+J3/zmN3jggQcStrv//vtxySWXoL6+Hl/96lexevVqfPOb38Sdd96JDz74AF//+tdxww034O233074u+985zv44he/iPfffx9f/vKX8aUvfQmNjY0AgEAggAsvvBDFxcV455138Ic//AFvvPFG/Av0SCSCSy+9FHPnzsWWLVvwz3/+EzfffDMkSRpQjrvuugtXXHEFLrzwwng/YM6cOQnbyLKMq666Cs8991zC759//nmceeaZmDJlCoQQ+PznP4/W1lb85S9/wbvvvotTTz0V5557Ljo6OpLWI5EhCSIijbS1tQkAor6+XqxYsUKUlpaKnp6e+OdPPfWUACDee+89IYQQ3/nOd8RnP/vZhH3s3btXABBbt27NZNaJiIgyxu/3C4fDIdavX5/w+xtvvFF86UtfEt/+9rfFjBkzhKqq8c+WLFkiAIjDhw8LIYS4//77xUknnZTw9z/96U/FpEmT4j9XVVWJe++9N+V8vfDCC6K0tDT+88qVK0VhYeGA7SZNmiR++tOfCiGEeO2114SiKGLPnj3xzxsaGgQAsWHDhnhenU6n8Pl88W3uvvtucfrpp6ecNyIiMq8DBw6IcePGCVmWxapVq0Z1H9n3XlUIIXbt2iUAiJ/97GcJ29XW1oply5YNug+/3y8uuugiAUBMmjRJXHnlleJXv/qV6O3tjW/zmc98Rixfvjzh75599llRWVkZ/xmAuP322xO2mTNnjrjpppsSfnf55ZeLiy66KOHvFi5cmLDN6aefLhYtWiSEEOLJJ58UxcXFwu/3xz9/+eWXhSzLorW1VRw6dEgAEGvXrh20fP37Ftdff7245JJLErY5Wm9H7+k3bdokJEkSu3fvFkIIEY1GxYQJE8Rjjz0mhBDizTffFG63O6GOhBDC4/GIX/7yl4Pmg8io+CQ6EY1aU1MTrr76akyZMgVutxuTJ08GEHute+vWrZg5cyYcDkd8+9mzZyf8/bvvvou3334bLpcr/m/69OnxfRMREeWiDz/8EL29vTj//PMTYuAzzzyDpqYmNDY24owzzkh4MuzMM88cURptbW1obm7Gueeem3Sbt99+G+effz4mTJiAgoICXHfddTh06BC6u7tTTqexsRHV1dWorq6O/+6EE05AUVFR/Mk4IDYFTEFBQfznyspKtLW1jahMRERkTuXl5bj55psxY8YMLFiwIKX7yKHuVfuaNWtWws+33XYb/ud//gef/vSncf/992PLli3xz/Lz8/Hyyy9jx44duO++++ByuXDnnXdi9uzZCAQCAGL3uN///vcT8nbTTTehpaUlvs1g6TY2NuLTn/50wu8+/elPJ8RSYGB/4Mwzz4xv09jYiJNOOgn5+fkJ+1BVFVu3bkVJSQm+8pWv4IILLsD8+fPxyCOPoKWlZaiqH9Ypp5yC6dOn43//938BAHV1dWhra4u/FfDuu+/C7/ejtLQ0oU527drFe37KOlwJgIhGbf78+aiursZTTz2FqqoqqKqKE088EaFQCEKIAa+FCSESflZVFfPnz8dDDz00YN+VlZVpzTsREZFejr5K/vLLL2PChAkJn9ntdnzjG98Ydh+yLA+Iq30XJsvLyxvy7z/++GNcdNFFWLhwIf77v/8bJSUl+Pvf/44bb7xxRAucDRbvB/u91WpN+FySpAGv1BMRESVjsVjii1mmch851L1qX30HnAHga1/7Gi644AK8/PLLeO211/Dggw/iJz/5SUJs9ng88Hg8+NrXvoZ7770Xxx9/PH7/+9/jhhtugKqq+N73vofLLrtsQN76PmDWP10Ag94/DxZjk/3dUNsf/f3KlStx22234ZVXXsHvf/973HfffXj99ddxxhlnDJtOMtdccw2ef/553HPPPXj++edxwQUXoKysDEDsWFVWVmLt2rUD/q6oqGjUaRLpgU+iE9GoHDp0CI2Njbjvvvtw7rnnYsaMGTh8+HD88+nTp2PLli0IBoPx323cuDFhH6eeeioaGhpw7LHHYurUqQn/ButUEBER5YITTjgBdrsde/bsGRD/qqurccIJJ+Bf//pXwt/0/3ncuHFobW1NGEjvu3B3QUEBjj32WLz55puD5mHjxo2IRCL4yU9+gjPOOAPHH388mpubE7ax2WyIRqPDlmXPnj3Yu3dv/HcffvghvF4vZsyYMeTfEhERjcZw95HD3asOp7q6GgsXLsSqVatw55134qmnnkq67bHHHgun0xl/i+vUU0/F1q1bB+Rr6tSpkOXkQ3AzZszA3//+94TfrV+/fkAsHax/cPQp/BNOOAGbN29OeKPsH//4B2RZxvHHHx//3SmnnIJvf/vbWL9+PU488UQ8//zzg+YplX4AAFx99dWor6/Hu+++i//7v//DNddcE//s1FNPRWtrKywWy4D6ODrQTpQtOIhORKNSXFyM0tJSPPnkk9ixYwfeeustfOtb34p/fvXVV0NVVdx8881obGzEq6++ih//+McAPvkWfPHixejo6MCXvvQlbNiwATt37sRrr72Gr371qykFayIiomxUUFCAu+66C3fccQeefvppNDU14b333sNjjz2Gp59+GgsXLkRTUxO+9a1vYevWrXj++efxm9/8JmEf8+bNw8GDB/HDH/4QTU1NeOyxx/DXv/41YZtly5bhJz/5CR599FFs374dmzZtws9//nMAsafoIpEIfv7zn2Pnzp149tln8cQTTyT8/bHHHgu/348333wT7e3tCa+hH3Xeeedh5syZuOaaa7Bp0yZs2LAB1113HebOnTvgVXUiIiItDHcfOdy96lBuv/12vPrqq9i1axc2bdqEt956Kz6QvWzZMvzXf/0X1q5di127duG9997DV7/6VYTDYZx//vkAgO9+97t45plnsGzZMjQ0NKCxsTH+xPdQ7r77bvzmN7/BE088ge3bt+Phhx/GqlWrBizq/Yc//AG//vWvsW3bNtx///3YsGFDfOHQa665Bg6HA9dffz0++OADvP322/jGN76Ba6+9FuPHj8euXbvw7W9/G//85z/x8ccf47XXXsO2bduSful97LHHYsuWLdi6dSva29uTvqk2efJkzJkzBzfeeCMikQguueSS+GfnnXcezjzzTFx66aV49dVXsXv3bqxfvx733XffgIfsiAxPv+nYiSjbvf7662LGjBnCbreLmTNnirVr1woAYvXq1UIIIf7xj3+ImTNnCpvNJk477TTx/PPPCwDio48+iu9j27ZtYsGCBaKoqEjk5eWJ6dOni9tvvz1hMTUiIqJco6qqeOSRR8S0adOE1WoV48aNExdccIGoq6sTQgixZs0aMXXqVGG328VnPvMZ8etf/zphYVEhhFixYoWorq4W+fn54rrrrhMPPPBAwsKiQgjxxBNPxNOorKwU3/jGN+KfPfzww6KyslLk5eWJCy64QDzzzDMD0li4cKEoLS0VAMT9998vhEhcWFQIIT7++GNx8cUXi/z8fFFQUCAuv/xy0draGv88lUVQiYiIhtI/lgx3HzncvWr/BTKPuvXWW4XH4xF2u12MGzdOXHvttaK9vV0IIcRbb70lvvjFL4rq6mphs9nE+PHjxYUXXij+9re/JezjlVdeEXPmzBF5eXnC7XaL2bNniyeffDL+ed989PX444+LKVOmCKvVKo4//njxzDPPJHwOQDz22GPi/PPPF3a7XUyaNEn87//+b8I2W7ZsEeecc45wOByipKRE3HTTTaKrq0sIIURra6u49NJLRWVlpbDZbGLSpEniu9/9rohGo4PWcVtbmzj//POFy+USAMTbb7+dtN4ee+wxAUBcd911A8rl8/nEN77xDVFVVSWsVquorq4W11xzTcKi5ETZQBKi32SKRERp8txzz+GGG26A1+sddq5WIiIiIiIiIoqRJAmrV6/GpZdeqndWiEyJC4sSUdo888wzmDJlCiZMmID3338fS5YswRVXXMEBdCIiIiIiIiIiyhocRCeitGltbcV3v/tdtLa2orKyEpdffjkeeOABvbNFRERERERERESUMk7nQkRERERERERERESUhKx3BoiIiIiIiIiIiIiIjIqD6ERERERERERERERESXAQnYiIiIiIiIiIiIgoCQ6iExERERERERERERElwUF0IiIiIiIiIiIiIqIkOIhORERERERERERERJQEB9GJiIiIiIiIiIiIiJLgIDoRERERERERERERURIcRCciIiIiIiIiIiIiSuL/AyGEp/De9BF1AAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, (race_ax, sex_ax, art_ax) = plt.subplots(1,3, sharey=True, figsize = (15, 5))\n",
"\n",
"sns.stripplot(data=data,\n",
" x = 'race',\n",
" y = 'exec_domain_z', ax=race_ax)\n",
"sns.boxplot(data=data,\n",
" x = 'race',\n",
" y = 'exec_domain_z', ax=race_ax)\n",
"\n",
"sns.stripplot(data=data,\n",
" x = 'sex',\n",
" y = 'exec_domain_z', ax=sex_ax)\n",
"sns.boxplot(data=data,\n",
" x = 'sex',\n",
" y = 'exec_domain_z', ax=sex_ax)\n",
"\n",
"sns.stripplot(data=data,\n",
" x = 'ART',\n",
" y = 'exec_domain_z', ax=art_ax)\n",
"sns.boxplot(data=data,\n",
" x = 'ART',\n",
" y = 'exec_domain_z', ax=art_ax)"
]
},
{
"cell_type": "markdown",
"id": "a6715b3c-a00e-42e2-8633-798881ae7cbb",
"metadata": {
"deletable": false,
"editable": false
},
"source": [
"### Q2: By inspection, which variable has the most between class difference?"
]
},
{
"cell_type": "markdown",
"id": "2b4bacf5-e194-4225-b3c1-3d25c2a830dd",
"metadata": {
"deletable": false,
"editable": false,
"tags": [
"remove_cell"
]
},
"source": [
"| | |\n",
"| --------------|----|\n",
"| Points | 5 |\n",
"| Public Checks | 3 |\n",
"\n",
"_Points:_ 5"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "737a1795-88d3-4225-b0df-e6aee178968a",
"metadata": {
"tags": [
"otter_assign_solution_cell"
]
},
"outputs": [],
"source": [
"# Answer: race, sex, ART\n",
"q2_most_bcd = 'race' # SOLUTION"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "788a69b0",
"metadata": {
"deletable": false,
"editable": false
},
"outputs": [],
"source": [
"grader.check(\"q2_initial_bcd\")"
]
},
{
"cell_type": "markdown",
"id": "27d11168-ead2-4651-b420-a7431b290ee4",
"metadata": {},
"source": [
"## Basic regression"
]
},
{
"cell_type": "markdown",
"id": "89603733-b40c-4d31-8ec3-d1933d2e6dd6",
"metadata": {},
"source": [
"We'll start by taking the simplest approach and regress the most correlated value first."
]
},
{
"cell_type": "markdown",
"id": "95b2c235-e31d-4198-960c-9759c8cf380a",
"metadata": {},
"source": [
"`pg.linear_regression` works by regressing all columns in the first parameter against the single column in the second.\n",
"By convention, we usually use the variables `X` and `y`.\n",
"\n",
"You'll often see this written as:\n",
"\n",
"$\\mathbf{y} = \\mathbf{X} \\boldsymbol{\\beta} + \\boldsymbol{\\epsilon}$\n",
"\n",
"In the case of `pg.linear_regression` the $\\boldsymbol{\\epsilon}$ is added by default and we do not need to specify it.\n",
"\n",
"You do not have to use the variable names `X` and `y`, in many cases you might have multiple `X`s and `y`s, but for simplicity, I will stick with this simple convention."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "d37176f0-9513-44c9-a293-0256c7f4c08c",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
names
\n",
"
coef
\n",
"
se
\n",
"
T
\n",
"
pval
\n",
"
r2
\n",
"
adj_r2
\n",
"
CI[2.5%]
\n",
"
CI[97.5%]
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
Intercept
\n",
"
0.711625
\n",
"
0.105822
\n",
"
6.724733
\n",
"
7.994463e-11
\n",
"
0.236815
\n",
"
0.234453
\n",
"
0.503437
\n",
"
0.919812
\n",
"
\n",
"
\n",
"
1
\n",
"
YearsSeropositive
\n",
"
-0.035258
\n",
"
0.003522
\n",
"
-10.011320
\n",
"
1.000644e-20
\n",
"
0.236815
\n",
"
0.234453
\n",
"
-0.042186
\n",
"
-0.028329
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" names coef se T pval r2 \\\n",
"0 Intercept 0.711625 0.105822 6.724733 7.994463e-11 0.236815 \n",
"1 YearsSeropositive -0.035258 0.003522 -10.011320 1.000644e-20 0.236815 \n",
"\n",
" adj_r2 CI[2.5%] CI[97.5%] \n",
"0 0.234453 0.503437 0.919812 \n",
"1 0.234453 -0.042186 -0.028329 "
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X = data['YearsSeropositive'] # Our independent variables\n",
"y = data['exec_domain_z'] # Our dependent variable\n",
"res = pg.linear_regression(X, y)\n",
"res"
]
},
{
"cell_type": "markdown",
"id": "308f2c65-40b8-4e26-93a9-2b2ac44e495f",
"metadata": {},
"source": [
"This has fit the equation:\n",
"\n",
"`PDZ = -0.035*YS + 0.712`\n",
"\n",
"It tells us that the likelihood of this slope being zero is 1.0E-20 and that years-seropositive explains ~23.6% of variation in EDZ that we observe."
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "f97f1fce-b27c-4371-bc5e-97378e170ff5",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[]"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGwCAYAAABRgJRuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACtT0lEQVR4nOy9eXxb1Zn//7mbdtmO7djO4ix2NmcP2SAkTkIgZKV02tIOLaUU2kLpBlNaYL5Doe2UUrrNr1MoQ6dAKUvpwgBZWeMEwpKELCYrcUJ2O3YcS7L2u/z+uJYs2ZKs5Uq6kp/365XXK7ase84950h6dM7zeT6MoigKCIIgCIIgChw23x0gCIIgCILQAgpqCIIgCIIoCiioIQiCIAiiKKCghiAIgiCIooCCGoIgCIIgigIKagiCIAiCKAooqCEIgiAIoijg892BXCLLMs6ePQu73Q6GYfLdHYIgCIIgkkBRFLhcLgwfPhwsG38/ZlAFNWfPnkVtbW2+u0EQBEEQRBqcOnUKI0eOjPv4oApq7HY7AHVQSkpK8twbgiAIgiCSwel0ora2Nvw5Ho9BFdSEjpxKSkooqCEIgiCIAmOg1BFKFCYIgiAIoiigoIYgCIIgiKKAghqCIAiCIIoCCmoIgiAIgigKKKghCIIgCKIooKCGIAiCIIiigIIagiAIgiCKAgpqCIIgCIIoCiioIQiCIAiiKBhUFYWLFVlWsP+sE52eAMotBkwZXgKWJcNOIjNoXREEUWhQUFPgbD/agUebWtByvhtBSYHAMaivsuG2xfVYMK4y390jChRaVwRBFCJ0/FTAbD/agXtfbMbBc05YjTyq7EZYjTwOnnPh3hebsf1oR767SBQgtK4IgihUKKgpUGRZwaNNLej2i6gpMcEkcGBZBiaBQ02JEd1+CY82tUCWlXx3lSggaF0RBFHIUFBToOw/60TL+W4MsRj6uZYyDIMyi4CW893Yf9aZpx4ShQitK4IgChkKagqUTk8AQUmBgYs9hUaORVBW0OkJ5LhnRCFD64ogiEKGgpoCpdxigMAxCEhyzMf9kgyBZVBuMeS4Z0QhQ+uKIIhChoKaAmXK8BLUV9lw0ROEokTnNyiKgi5PEPVVNkwZXpKnHhKFCK0rgiAKGQpqChSWZXDb4nrYjBxanX54gxJkWYE3KKHV6YfNyOG2xfVUV4RICVpXBEEUMozS9+tYEeN0OlFaWgqHw4GSkuL4phlVT0RWILBUT4TIHFpXBEHoiWQ/vymoKQKo8iuRDWhdEQShF5L9/KaKwkUAyzKYNrI0390gigxaVwRBFBqUU0MQBEEQRFFAQQ1BEARBEEUBBTUEQRAEQRQFFNQQBEEQBFEUUFBDEARBEERRQEENQRAEQRBFAQU1BEEQBEEUBRTUEARBEARRFFBQQxAEQRBEUUBBDUEQBEEQRQEFNQRBEARBFAUU1BAEQRAEURRQUEMQBEEQRFFALt1E0siygv1nnej0BFBuMWDK8BKwLJPvbhEEQRAEAApqiCTZfrQDjza1oOV8N4KSAoFjUF9lw22L67FgXGW+u0cQBEEQdPxEDMz2ox2498VmHDznhNXIo8puhNXI4+A5F+59sRnbj3bku4sEQRAEQUENkRhZVvBoUwu6/SJqSkwwCRxYloFJ4FBTYkS3X8KjTS2QZSXfXSUIgiAGORTUEAnZf9aJlvPdGGIxgGGi82cYhkGZRUDL+W7sP+vMUw8JgiAIQoWCGiIhnZ4AgpICAxd7qRg5FkFZQacnkOOeEQRBEEQ0FNQQCSm3GCBwDAKSHPNxvyRDYBmUWww57hlBEARBRENBDZGQKcNLUF9lw0VPELIiwxuQ4PIF4Q1IkBUZXZ4g6qtsmDK8JN9dJQiCIAY5BRPUPPjgg5g7dy7sdjuqqqpw7bXX4vDhw/nuVtHDsgxuW1wPjgWOtHXjkwvdONXpwScXunGkrRs8C9y2uJ7q1RAEQRB5p2CCmqamJtx+++1477338Nprr0EURSxfvhxutzvfXRtkMD0Jw2oQQ5ongiAIQi8UTPG9TZs2Rf38xBNPoKqqCrt27UJjY2OeelX8hCTdkqxgQpUNflGBKMvgWRZGnkGbK4BHm1pwaV0F7dYQBEEQeaVggpq+OBwOAEB5eXncv/H7/fD7/eGfnU6SHadKpKSbZVmYDQDAhR+PlHRPG1mat34SBEEQRMEcP0WiKAruvPNOLFy4EFOnTo37dw8++CBKS0vD/2pra3PYy+KAJN0EQRBEoVCQQc23vvUt7Nu3D88991zCv7vnnnvgcDjC/06dOpWjHqaPLCtoPu1A05F2NJ925L1SL0m6CYIgiEKh4I6fvv3tb+Pll1/G1q1bMXLkyIR/azQaYTQac9SzzNGjaWRI0n3wnAs1JWxUVWFFUdDlCaJhmJ0k3QRBEETeKZidGkVR8K1vfQv//Oc/8eabb2Ls2LH57pKm6NU0MiTpthk5tDr98AYlyLICb1BCq9MPm5EjSTdBEAShCwomqLn99tvxl7/8Bc8++yzsdjtaW1vR2toKr9eb765ljN5NIxeMq8TPPj0NDcPs8PhFnO/2w+MX0TDMjp99elredpEIgiAIIhJGUZSCKDXS10wxxBNPPIGvfOUrSV3D6XSitLQUDocDJSX6OS5pPu3AN57eCauRh0ng+j3uDUrw+EU8dsOcvCqMZFnB/rNOdHoCKLcYMGV4Ce3QEARBEFkn2c/vgsmpKZDYKy2SURg5dKAwYlmGZNsEQRCEbimY46dihhRGBEEQBJE5FNTogEjTyL47UiGFEZlGEgRBEERiKKjRAaQwIgiCIIjMoaBGJ5DCiCAIgiAyo2AShQcDC8ZV4tK6ClIYEQRBEEQaUFCjM0hhRBAEQRDpQcdPBEEQBEEUBbRTQyQNFd8jCIIg9AwFNURS6NFskyAIgiAioeMnYkD0arZJEARBEJFQUEMkRO9mmwRBEAQRgoIaIiH7zzrRcr4bQyyGfqaiDMOgzCKg5Xw39p915qmHBEEQBKFCQQ2RkGTMNoM6MNskCIIgCEoULiDiqY+yqUqKNNs0sVy/xzMx2xRFGa/sO4czXR6MKLNg7fRh4HmKs/UCqd0Igig0KKgpEOKpjxrHV2Lrxx1ZUyWFzDYPnnOhpoSNOoIKmW02DLOnbLb5+NYW/H5LC1zeIGSoW4YPrNuP25fU42uN9Rn3m8gMUrsRBFGIMEpfW+gixul0orS0FA6HAyUlheN4HVIfdftFDLEYYOBYBCQZ510+uP0SLAYO1SWm8O8veoKwGTnNPKN625dQZhFg5Fj4JRldabbz+NYWPLTpMCRZAc8xYBlAVgBRUsCxDH64YiIFNnkk3nrTel0RBEEkS7Kf37TXr3PiqY+MAgtRUiDJ6j8jz2ZNlaSl2aYoyvj9lhZIsgIDz4BnWbAMC55lYeAZSLKC329pgSjKGfebSB1SuxEEUcjQ8ZPOiac+8gVkBCQZfE++iy8ow2xQc176qpK08JLSymzzlX3n4PIGe3ZoomNqlmHBczJc3iBe2XcOn75kRMb9JlIjFbUbeZQRBKE3KKjROfHUR6IsQ1EAjgUkWf0Z6E3kNXIsHBqrkrQw2zzT5YEMgI8TC7EMIPX8HZF7klG7ab2uCIIgtIKCGp0TT33EsyyYnlwUhlF/jiQTVVI2GVFmAQu137E2eWQFYHr+LhXSVeqQwid6DDq7A+BZZEXtRmNNEES2oaBG58RTH5kMLAwcC09ATRQ2Cb1BTSaqpGyzdvowPLBuPxyeIFhGjjqCkhUZoqSg1CJg7fRhSV8zXaUOKXxij4FXlOF2+jGq3KyZ2o3GmiCIXECJwjqHZRnctrgeNiOHVqcf3qAEWVbgC6r5NBzLgGNZ+EQZsqzAG5TQ6vTDZuRw2+J63X0T5nkWty+pB8cyCIgKRFlWgxlZRkBU1U+3L6lPul5Nur5U5GcVfwwURYEnIOJkpze83jJZVzTWBEHkCgpqCoB46qPpI8vwwxUTMaO2NGNVUi75WmM9frhiIkotAmRZQVBSIMvqDk0qcu50lTqk8Ek8BrVDLLAaObAs4PYFM1pXNNYEQeQSOn4qEBKpj25eWFdwuQpfa6zHTQvGZlRROF2lDil8Bh6DoXYTPH4Rd109CeU2Q9rrisaaIIhcQkFNARFPfaSFKikf8DybkWw7XaUOKXySH4NymwGLJwzNejvFPNYEQeQOOn4iCpZIZVgs4il10n1eMZGrMaCxJggil1BQozNkWUHzaQeajrSj+bSDcg0SEFKGXfQE0dftI6TUqa+y9VPqpPs8vaDFGsnVGBT6WBMEUVjQ8ZOOINlraoSUYfe+2IxWpz+mL1UspU66z9MDWq2RXI1BIY81QRCFBxla6gQyEUyfqA96WYHAplGnJoXn5YtsrJFcjUGhjTVBEPoi2c9vCmp0gCwruPGJD3DwnBM1JaZ+Bc9anX40DLPjqZvm0TfaOBR7ReFsrpFcjUGhjDVBEPoj2c9vOn7SASR7zZx0FWCFohzL5hrJ1RgUylgTBFG4UKKwDkhG9hok2eughtYIQRDEwNBOjQ6IZ1oZIiR7LTMLaD7tKPrt+0THFIPpCKOv0WQya0TP0ujBNHcEQeQHCmp0QDzTSqBX9jqs1IiHNx/CsXZ3USujEql7AAwadVjfceBZqEaTARG1QyyaGU3mClL2EQSRCyhRWCf0KlukfrJXngUUAJKsFLUyKpG6J3TqUuxjAMQfhzanH56ACKuRw1C7qZ80Wq9jQMo+giAyJdnPb8qp0QnxTCsn1dgx1G6EJCtFbQiYyPiwusSATncAne4Aqu3Goh0DIPE4jCo3w2LgwTBMwRiYkqElQRC5hI6fdEQs00pZUXDbX3YVvTIqkbrHH1R6qtEy8IsKzBFpI8U0BsDAKqeqEiPcvmDGRpO5gpR9BEHkEgpqdEZf2WvTkfZBYQiYSN0jyjIUBWAY9f9AdKJssYwBkKQBpIKMjSZzBRlaEgSRSyio0TnJKqNyoXpJR72S7HMS3SfPsgh9yefZ/h+OA42B1qqbeNfTop1szXeuxiBX96NF3wiCKD4oqNE5ySijcqF6SUe9kspzEt2nUWDCPxv56A+ngcZAa9VNvOs1jq/E1o87Mm4nG/OdqzFIdV6zsX5JZUUQgxtKFNY5IUNAm5FDq9MPb1CCLCvwBiW0Ov05MQQMqVcOnnPCauRRZTfCauRx8JwL977YjO1HOzJ+TqL7bHMGUGE1oNxqQJsrkPQYpNPvdMZh7ykHHtp0GPtOd2XcjtbznasxSGdetV6/Wt8rQRCFBwU1BUA8ZVQuVC/pqFfSVbwkus9fXzcTv7luZtJjoLXqJt71jDwLSZYhyQpESYFRYDNW92g137kag0zmVav1SyorgiAAOn4qGGIpo3KRK5COeiUTxctA95nsGGituol3PV9QRkCSwffkjfgCMswGLu12kh2HZMjVGCRzvWyvX1JZEQQBUFBTUOTDEDAd9UqmipdE95nsGGituol3vZAyi2MBSe6vzspE3ZPpfOdqDJK9XjbXL6msCIIA6PiJGIBI9UosYqlX0nmO1mjdh3jXCymz5B7JeV91Vj49mXI1BuleT0v03DeCIHIHBTVEP2RZQfNpB5qOtENWFNQNteGiJ4i+jhoh9Up9lS1KvRJSvAz0nIYae7id5tMOTfMdIvsgyzK8AQkuXxDegARZlmP2O9nrRd6TSWBh4FiIkgIDx0CB0tuOkno7mRJv7rI5BkD8tRCvb9mc73T6RhBEcUDHT0QUsSSxFTYDOBZodfr7+VLFUq+EFC/3vtgc9zmN4ytx01M7sia9DfXhjhf24Mj5bkR+zjEMUG41pKS6SXRPHMuCZST4RBknLrjDhQIZhkFFiu1kQry5k2Q562MQby0k6ls25judvhEEUTzQTg0RJp4k9pzDDwAYVmpMWr2SSPHyxfmj8Mz7J3MsvQ1ZLaS/OxDvnkZXmFFiFsAyDIBQTR2mp9XcEG/uTlzwwukNQu6592yNQaK1kCupdT5VggRB6ANy6SYAqEcDNz7xAQ6ec6KmxNSvSFqr049JNTbcdfUkdHmDaVcUbqix46andiRsp2GYHU/dNC/jireh+6kuMcIfVCDKMniWhVFg0OYMpN1O5D2VmQU8vPkwDrU6UW03wi9GtMMzaHOl30469xo5poqi4HiHG56ABIuBRU2pGZKsaD4GidZCMutK6/GhisIEUXwk+/lNx08EgOQkscfa3WAZJiXPob6Kl+bTjpxIbyPvh2XYHhPMXlVSJu1E3lPzaQeOtfe0w2rbTrIkJzdXwICB3dT7ktdqDNLpG5A9qXU+VIIEQegDOn4iACQniQ1qIImldrRnILk5ywCKEpKb66NvuewDQRCDB9qpKSCyua2eK+PBwdpOmVlA82lHTk0w9SA3z3Qe6CiJIIhUKKigZuvWrXj44Yexa9cunDt3Di+++CKuvfbafHcrJ2RbPZIr48HB2M6wUiMe3nwYx9pza4IZkpurOTUcTIbeoCZXZqiZzAOZUxIEkSoFdfzkdrsxY8YM/Pd//3e+u5JTcqEeyZXx4GBrh2OB8y4/DrVGz92+0114aNNh7D2VPRNMn6jKzTmWAc8x8AXlnJuhpjsPZE5JEEQ6FKz6iWGYlHdqClH9lGv1SNS3Y1mBwGbn2/FgaKduqBUObxDnHL5oVRIUHG93h3dQxlZaoxRL6c5pvHuN2hHK4hik07dYfciHYoogCH1D6icAfr8ffr8//LPT6cxjb9Ij1+qRXBlnDoZ2ZEXBbX/Z1V+VFOhjghnMvgnmzQvr8pqbkso8kDklQRDpUtRBzYMPPogHHngg393IiHwY9eVKElvs7TQdadeNCaYeZM75MiMlCGLwUNRBzT333IM777wz/LPT6URtbW0ee5Q6keoRI8PCF5TDxd1MAptToz5SoqgkOw7JqpJESfWL4lkWJsPAc5qofVGU8cq+czjT5cGIMgvWTh8Gni+o1LmcKdcIgig+ijqoMRqNMBqN+e5GRoTUI3tPOSDJ6rFFyFvIwLHgWBYzakuzbtRHShSVVMYhrirJ0KtKYhig1emFaq+gzinPMZg+sixlRdD+sw78fksLXN4gZKgqgAfW7cftS+rxtcb67A+ORuRKuUYQRPFRWF/hBiEsy6BxfCU8ARGegARAPbYAAE9AgicgonF8ZVZ3TEiJopLqOMRVJQXVIngKQrs1TNScuv1SzDlN1P7tz36IBzcegsMTBMsyMHAMWJaBwxPEQ5sO4/GtLbkYIk3IlXKNIIjio6CCmu7ubuzZswd79uwBABw/fhx79uzByZMn89uxLCLLCrZ+3AGrkYOlJ5lU6ikMazFwsBo5bP24A7KcHRGbLCt4tKkF3X4RNSUmmAQOLMvAJHCoKTGi2y/h0aaWrLWvF9Idh3gmiwLPwiKwsMaYU4uB7zenidqvthvQ5QlCVgCBU4+3WIYFz7Iw8AwkWcHvt7RAFKMrCusZMqckCCIdCur4aefOnVi6dGn451C+zI033ognn3wyT71SURSln1JDC0JKkCq7CUaBhS8QkVNjUHNssqkEISWKSibj0Ff509kdwC82HcRQmxFGvn+elE/sP6eJ2nf4xLDvNsNEf09hGRY8J8PlDeKVfefw6UtGaDswWSRXyjWCIIqHggpqlixZAr2W1bnoCcIXlGA38bAZec0CnEglCAOmR/qrjVIm1fZjMViUKJmOQ6Typ+lIO0RZzZ9hmOTmNFH7Qal3B0ZRAPRZeiwDSADOdHmSu1kdoQfVFkEQhUNBHT/pHV9QQrvLjxMXPGh3+eELShlfM1IJEotsK0Hy3b5e0HIc0rlWoucIEYFOrFhaVtQ4Z0SZZcC+EQRBFDIU1GQBWVEluqcvevDGgTZsaD6HPSe70so7CSlBLnqC/XapQkqQ+ipb1pQgke3LigxvQILLF4Q3IEFW5Izal2UFzacdaDrSjubTjqTGJ53naIGW85DOtRI9p9TEhzdnFCU66JEVGaKkwG4SMKbSkvNxSxY9r4V8rTmCIFKnoI6fCondJy/i2Q9O4dQFd7gs/NihNty6uA5LJ1UnfZ2QEuTeF5vR6vSjzCLAyKm1TLo8wawrQULt3/HCHhxp64aiKGFJOcMwqLAa0mo/HYl4PmXlWs5DOtca6DllFgEObxBBCVAgg+2pgyNKClgGGGIVcPszH+pSjq/ntUClDAiisChY76d0yKb3U6c7gK6eHIjdJy/i168dgScgocQkQOAYBCUFTl8QFgOHu66eiCUTq2Az8uDj5Gj0JVceRvHavuOFPeh0BxC5WhgGKLca8JvrZqbUh5A0udsvYojFAAPHIiDJuNjzgR5L3ZLOc7KBlvOQzrUSPSeyTk0otcZs4CBwqqllPsctHnpeC3pZcwRBJP/5TUGNRoSCGllR8MN/NONYezcqbQYwEVmbChR0dAdQN9SGhz4zDSzDwGLgYTfxsBi4AZOL81HRN9JcsNpuhF9UwkodI8+gzRVIyVwwHbNCvRkcajkP6Vwr2YrCw0rN+OeHp3G4zaWLcYt1H3pdC3pbcwQx2CFDyzxxtM2NUxfcKDEJUQENADBgYDcJOHXBjaNtbkyosfUU1RPBsyxsPcopQ5yy9vlQgkRKiVmWhdkARCp1UpV0pyON1pusXMt5SOdaiZ7D82xYtt182oHjHW7djFtf9LwW9LbmCIJIDkoU1hiHL6AeC3Cxv70ZOAZBRYHDFy39FWUZXZ4ATl/04GyXFy5f/4TQfJCMlDmYgqQ7netp3YfBgt7HTc9rQe9jRxBEbGinRmNKTQYIrJpDY+T7BzYBSYHAMCg1xZf++oISfEEJF7oDsJnU4ykj39/YL0Q2j6WSNRcsMwtoPu3o14e+fSszCymbFRazwWE2DSgznbtsk8685motFPOaI4hihoIajRlXbUVthTVuTo3LF0TdUBvGVVsHvJasKHB6g3B6gzDwLErMAmwGPuoDJ9vqjGTMBYeVGvHw5sM41h7dh8bxldj6cUdU3+qGWlFhM+Ccw5+0WWGxGhw+vrUlqwaUyc/dIRxrd+dc3ZPOvOZqLRTrmiOIYoeOnzTg+fdPYPNHrfAGJbAMg+vn1cJi4NDRHYBPlCErCnyijI7uACwGDtfPqwWbYsXhgCijw+XHiU4Pzrt88AWlnBhNDmQuyLHAeZcfh1qj+7DvdBce2nQYe091Rf3+UGs3zrvU5yVrVliMBoePb23BQ5sOZ9WAcqBx48Nz58qLUWk685qrtVCMa44gBgOkfsoQSVbwwHV34zPvvIiNUxbj/IprMGPBNBh5Bn/bdUatU6OoR061FVZcP68Ws0YNybhdWVFwzz+b0dLejWElJrBsb3yaDXVGLClx3VArHN4gzjl8UQoRBQqOt7vhCUiwGDiMrbT2PtbTt2GlRpSaDerujgZy5kKS1oqijDk/ex0OTxAGngEb4dckKzICooJSi4Cd916pyVFU7LmzweEN9Js7IPfqHq2l7VmrU1PAa44gCh2SdMcgG0HN9qMd8K5YhWUtO8K/2zFiMjZPW4zOFWsxbGIdhg8xosJiwrhqa8o7NPE40tqN+15qhtnAwyiwYBkGHMuEr+8NSvD4RTx2wxzN1Bl982NkRcFtf9kFq5GHSejNO/AGJJzodId/Hl1u7fE3QlTfHv3SbLAMo5mcuVB48cMz+P7f9oBlGfBs/6BFlGXIsoJffm6mZgaUyc5diGysn1T6p6e1UAxrjiAKHZJ054hymwHP3/0Qtr/4Tyxv3oK5p/Zj7pkDmHvmAKTNj+G9UVPx+rQl2LPqGrjmTsDM2jJwGrwhhlRWJRwDKOrOjSyrTuEcy8DAMpobTfaVEjcdaY+pEBFlGYoCcCwgyerPsQwbu7xBLJ4wNKM+FCJnujyQAcTIIweQHQPKZOcuRK6NSrWWtmtJMaw5ghgsUFCTIZNqSnD/LUvR+rnL8PrBVrzw7n5UbHwZKz9qwqxzh3H5iX24/MQ+BDf8Hm+PmYmnZyyFf/VaXDqrDkaeg8sfRKnJEN7FkSQFbx4+jzanD9UlJlwxsQpcDHl4pMrKwAP+oAJJkcExLIwCA7+ogAVgM2RviuMpRHiWBdNTpp9h0G83YiDlSDYVQX3Jxw7BiDILWKjjE+tpuTCgzFTdo/XuRbzr0S4JQRCpQMdPGhFpk+ALSnj/eCeat+3BsFdfwcoDWzG1rTfx08/xaKqbg3UNi7B14mVgrBaMHWrDiFITtnzcAbdPDKthrCYeX5w3CtfNrY1qL1S5+HCrE5KsICjJYU+mUFn8iTUleOgz02ASONiNAmwmXpNdonAfwlVXXagpMaaUUxMvXyOWIshuFjRTBEWSL8+hXOfUxCLe3AEDz5HWirt414ulnqN8FoIYnFBOTQxyFdRE4gmI2N5yAYe27MSo11/B6gNbMf7Cqd7HBSPerJ+HVxoWYUvdHPh5AzgGYFlAUQBRBjgG+Nqiun6BzQs7TuHxbccgKQDPqgFNoucwDAOrgYPdJETluGRCrz+OFGWy2O7ywe2XYDHwqCox9jNsjOWbE1IESbICnmOiTBk5lsEPV0zULLDJt+dQLu81HvHmLtEcae2HFO9658Prh0N1iYl8lwhikJPVoObkyZOorq6G0WiM+r0syzh9+jRGjRqVeo9zQD6Cmkgc3gC+9/weWI8cwsoDW7H24FaM6ToXftxlMOPV8ZdiXUMj3h07E5JgAKAgKAF2E49/3rogfBQV2qk5dM4JWem/U8MyLCYNs4c9pvoicCxKTNrs3sRTiER90x5AOZLL3Qu9eA5F7kqFDCiztSsVj1TUPVqPQbzrZbLTRxBEcZLVROExY8agoaEBL7/8Murre99829vbMXbsWEiSlM5li542RwDegARMaMCLkxrwtPdm1J44iOXNTVhzcBtGuNrxmf1v4TP730KXyYZNExZg/aRFeG/MdHT7gDcPn8dVk6sB9HpMVdqMMPBMzJyaSI+pvgQlGRfcfnR6Ahnv3iwYV4lL6ypi5j7cvLAuqZyIV/adg8sb7Nm1iA5aWIYFz8lweYN4Zd+5jBVBevEc+lpjPW5aMDZn+UOxSDR3fdF6DOJdzxeQEZBk8D05P76gHF6b5LtEEEQi0s4ibWhowLx58/DCCy9g2bJl4d8PotOslIlULLEMgzKrAa7JM/Bo7UT8fMlXMOvMYaw9tBWrD72NKvdFfGHfq/jCvlfRYSnFxomXY2vHFei8dgWWNlRHXYsBA5PAILKWooEDXDE8pvqiKAq6/SK6/SIEjoXNyMNm4iHEUcXEI55CJFnlSC4VQcn4+vRV/qTznGSINKDMF8nOkdZjEO96yarnyHeJIIi+pBXUMAyDRx55BM888wxWr16NX/ziF/jOd74TfoyITTxfKCPPQWFYfDiyAR+ObMB/LrsFc0/ux5pDW7Hy8HZUehy4YfcG3LB7A8799UFsmLQQH162HMHSsfAFZVhi7LAk4zHVl6Ak46IngIueACwG1XPKYuByMqe5VATp2XNIz2g9BtlSzxEEMXhJK6gJ7cbccccdmDRpEv71X/8V+/btw3333adp5wqBkOT0RKcbPMMmLLAXzxfKbuZx3uVHaI+L4TnsHDsDO8ZOxwNX3YpLP9mLNYe2YcWRdzGs+wJu3vkSbt75Ek6VVmPdpEV4bdpinB49EXaTAI5lkvKYkhUFR9vccPgCUZLyEJ6ACE9ABM+yYVPNVHdvIscn1tFG5GNjKyywmXg4vSJYRgbAhHOEAAWipObUrJ0+LKN2yi0GNNTYw74+1SXq0Z0oy+BZ9ehuIM+hart6vBd+Dh/7OZFoKVPPpeQ9kkz9kBLNQ+T1TAYWBo4N59SYBDaldhJBEnGCKG7SShRmWRatra2oqqoCABw4cADXXHMNLBYL9u/fr9ucGq0ThSOTLP2iDI7BgFYIu09exK9fOwJPQILdJMDAMQhICtpdXniDsaeCAdA4vgLHzl5Ew953sergVlz18fuwBn3hv2kpH4F1kxbh1WlLcLxqNErNPL6/fGLMfuw+eRHPfnBKtXDoSQ5NxsLBJHCwm3jYjHxSuzeJpL8A+j1mFFic6FCPofrCMcDdKyfFTKBNtZ1QEvMf3z6OTncAiqKEAyiGYVBhNeDX182Mqfy544U9Pc/p/T3DAOVWA34T4zmAtjL1XEreY5GOYir0vHjz8Mz7JzVRzyXT92yavxIEkT2yqn5aunQpXnzxRZSVlYV/19nZiU9/+tPYtm0bZDnWx1L+0TKo6StFZRnAF5Th9AVhMXC486oJCQObcFDR4wtVZhFw5qIP7mD/gNAqcDAZWMgKYDfykBUFAVc35h54D6sPbMUVx3bCJPbmFxwcOgYbGhbhzPK1aFg0GwvqK8KJlpFBVYlJgMCpx2HJ9DsEyzCwGtXdm1gl9mONT6QkN7ThI8lKPxmvyydC7rMiGQBlFgG/v/6SlCTG8doJPRYQZXT7xaQDlOigJjoQivccLaXbepCBA6n7IQ0kA//i/FExVXKpqOeS6bOWUnSCIHKLLurU/PznP8ett94aFfzkE62CmlhSVFGSIckKFCjo6A6gbqgtrpwaiD7+sZsE/O+24zjW0Y0KqwEuvwhRksFzLOxGHp9cUH2UxlREHxHJiow2px8VcgCXHdiOZXvfROPx3TDIYvhv9taMx6YpjWi7+hpMWzANL+85i08uuKOOvwAk3e++GHi2X2G/RNJfWZFxpK0bADChyhY24uwr4y0zCxBlRZWemzmcdwVTklnHa6fvY+OHWhGQEHWU1OYKJGyrusTY78iqzdn/OVrK1PVQsC+SZI9xkpWBP3HjXBxsdWWlonA25PgEQeQWXXg//exnP8N1112nm6BGK2JJUcMffgoDu0lIKKcG1N2O0GNHWrtxqtONEpMAlmFQahLCf+cLyuGdhICo9KicQtdgMcRqhCfAYdF934VT+hb+366jMK97Bcv2vYUFJ/ZiRuvHmNH6MfDG/2LniAacaGhE57RGuIVqWCOSgBkk1+++BEQZF8RoafjR891xpb/+oNKTk6XmpZh7cj37ynjNBj5KYl5mQUoy63jt9H0sIKGnnci2Eku6WYbtuV7i52gpU8+l5D0ZklVMJSsDP9jqykg9p0UfSCJOEIVPVoOaYpV3x5KisgwDtqcwHscA7oCIgCxD4FgEpcTHcVHmlH2QlN6iepISyqLoxcAxcCkKXIEg5o4px8zaORDXXoLdp76Lez44DPuGl3B1cxPmntqPOWcOYs6Zg7jv9f/Be6OmYd3kRrw9bRGk8gpYBC58rYFk4LGIlIYfbnPBL8ooM/e/n5Bcl2GipbrpyHgTSYzjtTPQY+m0Fe85WsrU82GCqQXZksIXWh8IgsgNZGiZBgNJWwOyAiPHYmyFFbXlFgQlGd6gBG9A/ScrStTxU5cnGFPqDQAcwyL05ZJlGPiCclSRvVjSbZ5jMXdMOeaOuQy+T8/Dur3n8IcPD6F+y0asOtCES84exoKT+7Dg5D6Imx/B22NmYUPDImybuhCKxQa7UUCq9L0fNbCTYDYAHMOEd7JCct3Q/8N9TkPGm2geItvhGAYXPQEEJTXINPKx+5BuW/Geo6VMPdlrDSs1o/m0QxN1TyqKsnjtZFMKn6wJZplZGPRyfIIYLFBQkwapSlsFjg3bEgDAlkPn8YetLTje7laPXBjAJynwBP0YVmqKynUxCEz4w77d5YMoKzHtEGJJt6NVThY0L/oX/OXSa1F14RxWHdyGNQe3YWpbC5Yc34Ulx3fBv/m/sXXsbGzZfwXeXrsGl88Yg0k19gGVTn3VVFH3w5sggwEjq4mtBr63llFkAJeOjDfRPBgFBgzDQJIVHOtwI3LPkIU6fiyLfkFkOm3Fe87a6cPwwLr9cHiCYBm5Xx7MQDL1SJK5ltXI4Z8fnsbxDnfG6p50FGWx2slUBp5q/2KZYNYNtaLCZsA5h1/TPhAEoT+ymihst9uxd+9e1NXVZauJlMiO+il1aWukCkNgGfhFGW0uP7wBEWYDh3KrMSz1dvmCkGQFLp8IBckZVwLxVU4d3QH4giJMAguTwKOq9QSu3LcFaw5tw8SOk+Hne3kj3qifi7dnLwO/ehUaZ4xC/VBrvwBnoHZi3Q/PMgADyDIwxGrISMabaB78QQkuv4h42IwcTAKfhplj8nOeK/UTywAlZrVOUabqnnQVZVqOWzr9S2SC2dtvaNIHgiByiy7UT8Uc1ACpS1sHUmGc7PSCYRSYeQ6Bnh2P2nIrXL4Azjp8kOT+xpUcy2BiTUmUYilkdtm3yB+gqozOdvnBsoCZZxFUFHAArCYBE9s/wbR3NmPNwa0Ye7HXaLO7x2jzvTnLYF29CoumDceYCmvK7QhMbz0cAHjug1M41emBpKj5DunKeGPNw9hKK/ac7oLbL4V7FTKNDP3fZuQwY2SZurORQVsDPUdL48qY1zIJGGIV4PKJGat70lWUDdROOuOWSv+SMcEcVmpEqdmAY+2ZS8QJgsgtughqVq1ahf/93//FsGEDb6/ngmy4dKciOW0+7cA3nt4JqzF2fRdvUILbF8QPVjSg3GZAqUmANyjie8/vgUng4hpX+gIifvypaVFqqvteaobZwMMYQ97rE2V4/UHc0liPMosQVVG4yxPA1iPtOPH625i0ZQNWH9qGkc728HO7TDZsHn8Zdl66HGLjYjQduwi7SUi5HSA6D2eozYTZo8tg7zmiS1XG23cejrS58IO/7wXLMuAYBgrQW1cGgKQokGUFv/jsDEyotmfUVjLPyWZF4TGVFtz+zIcJ15XHL+KxG+YMqO5JtEa9AQmfXOgGwGBMhbWfAepA7Wghz47XP29AwolOd/jn0eXR/Qv17dEvzQbLMFRRmCAKjKxLumVZxtGjR3H+/Pl+xfYaGxsBABs2bEj38gVDKpLTpFQYClBuM2DxhKEAgKYj7ZAVwGbkAQbgWQWywoWVZbGMKxOpqdTnMHBB3YafO6Y86rEyiwHXzBwBzPw8Om69Fs8dPo9zm7Zg6tubsPrw26ju7sTnm1/D55tfQ8czpbhk4uXYNHUxjoybAZvZEGWlkKgdIFrWDgAX3AFc9ARhMXIYX22LW9gvFn3noenI+bBaiGF69pAihoOFAgnAOYcXn5k9Mul2YrWVDFoaV/a9VtORds3UPekqypJpRwt5dqYmmF3eYPi1RRBE8ZFWUPPee+/h+uuvx4kTJ/rJthmG0a1NQr7J2EhR4MKycUVRICuqR1Nf9VM848wQAUkBD6DLE8SOTzpjej8BQKXNiM/MrgVm34BWx+fwvwfOoXX965j3wWtYefidKKPNVls51k9ahFenLsaxuimwmwSICiAwzIDtRCIrCrp9Irp9qmt4yJaBH8B3qu8uwLBSc84MMrNFsrs7ya6rzu4Amo60p61Wiqdc69tOOiqiePearJKpUEww9e49pff+EcRApBXU3HrrrZgzZw7Wr1+PYcOGkTN3kqSjBIn3HIZhwEJBt1/CpBo7Fo6vgE+U4fFLcY0zATX34EJ3ACwL/O+2Y0l7P51zeLHrjAunaqdiy7DJeDj4Tcw9vgfLP2rCiiPvoqa7M8poc/2khVjf0Ii24ePwP01HIYNJ2mMqRFCS0ekOoNOtuobbTHxUwcAQsZQwYyutMBk4ePxSxsqjfBDL4+mBdftj5uEMtK7aXT4wDINfbDoIUUbaaqWQogxIXjWWyb2unlqDkxe9fZRMtphKpmyaYGqF3r2n9N4/gkiGtHJqrFYr9u7di3HjxmWjT1kjGzk1qZKOEiTV5/hFCU2H2vHjdfvh7mOceSFClVRhNSbl/ZTIL0pWFCg+P+Z9vBNrYhhtHhsyHK80NOKNaUtwZkQdRFmGzcgn5TEVi76+U4mUOpIsw+ENQlGQV6+kVElHMRVvjbQnUASls954Vk2y1kpFlOheFQAWgcWIIZaklEzZMMHUCr17T+m9fwSR1UThK664Aj/4wQ+wYsWKjDqZa/QQ1ADpKUHSfc4jW47iaM83L5ZRk3cVRelXDyee99NACqeO7gCG2gywGQUc7+iG7PVg4eEPYhptHqocjXUNjdg4pRFy/Tj8f1+YCasx/VJJPMvgB//Yh4/bXBhWao6p+rGbOHS6A+jukcRnojzKBZl4PMVaI56gBFlWMKrckpIqKtF6A6CJkinevSpQ4A/KUKAeHTbU2Hs9wqKUTAKOtbuzZoKpFXr3ntJ7/wgCyHKi8Le//W3827/9G1pbWzFt2jQIQnQF2unTp6dz2UHDgnGVuLSuIqWzay2e09kdwC82HYTZwINl2Kh8qHjeT0fb3Dh1QfWligxoIp/T5Qnie1dNBAsGDl8AF93TcO+WxTD6vFhwYDtWHdyKxcc+xKSOE5i07Wl8f9vT2FczDhs2qkab0xdOx/wx5TCmkBgMAAfOunDsfDdsRtX8kmXUD0GGYcKePh6/iKe+Mg/HL3g0UR5lm0w8nuLNt80kpOx5NNB6S3UtpnKvkV+zZAVweEUMsRqi+n2hO4CfXjstppLp5oV1usoL0bv3lN77RxCpkFZQ85nPfAYA8NWvfjX8O4ZhoCgKJQonSTpKkEyf03SkHaIMmAUOLMuEk41Dtg2xvJ+SUlIpalG9kMJpxyedYFgW9qFD8NHi1dixYCXQ1YkFzW9jzYGtWHBiL6a3HsX01qPAm3/CzhEN+OeUxehcdQ0umT8Zc8YMiVJRxSOyb7KsQIaa/RuyZQgpXhx+MScmj1qQqcdTrPlOVxWVaL1poWSKd6+KgqgK0H290wZSMmnRNy3Ru/eU3vtHEKmQVlBz/PhxrftB5IC+yhaGYcAxANezA+MOiDCyLKrspnCQmoySKrH6ioXFwAFVQ7H7imvxzsK1YDrasfijbVhzaBvmn/wobLQpv/oY3h81Fc9PWwLX6k9h3pzxmDVqCLg437Jj9k1Ra9BIsgK/JINjEOV6rne09IvKpu+SFsS711AtoVBg0zfAzXe/U0Xv86D3/hFEKqQV1IwePVrrfhA5YCCVjNMromGYPfzt1xuUYDXwGFVpRcv52Dk1Ll8QdUNtUd5T8dRXDMPAYuTQUVqOA5+6Hg0P3IW/v3cA5RtfwYqPtmD22UO47GQzLjvZDHHD7/HOmJl4evpS+Ndcg0svqcO0kaVRcvCBVF5Or9o3u4nHeacPNhMPiyG5JZ8vaWumflGR/S4zC6gbasOh1sRqu4Yau2YmmEB8eXbf36+cXI0HzEK/e408AVETh1ULBIFjUWridaFkSoXI1111iVpAU5Rl8KxaQDPf95Mtfy6CyAdJJwq//PLLWLlyJQRBwMsvv5zwb6+55hpNOqc1ekkUzifpqq/u+ec+uPwS7CYeAtvr45SMYipSfRXrOf6ghPePd2LvO3tRs/kVrNrfhGltLeFr+TleNdqcuRTy2rVYOLPXaDOVdgC1fomtp/aNIU5eTb6lren6RcXqd4XNgPMuf1y10hfnj+pnAJnJvcaSZ9vNAmaPKsOuk10xf990pCOu+qkvDNT7+P31lxSUGmf70Q7c8cIedLoDUJReU1qGYVBhNeDX183UifpJG38ugtAazdVPLMuitbUVVVVVUZ4v/S6o45waCmpUMlVfBSQZPMtgdIUVX5hbixm1ZTGfE+Xe3cf7KZ6c2xMQ8W7LBRzc+iFGvvYKVh9o6me0+Wb9HLx9yTJwa1ajccYoOL0BPLfjdErtAIBR4NTifgY+vDOhF2lrqn5RA5lQVtmNuNAd6KcUeub9k5rda7xgLCj1vsUIMYK0xRMqwwFP6F4FnoUvKMdsh2WAe1ZO0qV6LR7RQU3v7xkGKLca8Js8BzWAdv5cBJENdOH9pDcoqOklneOVeM/xixK8AQmegAR/j2Q8/JwIf6dkKgpH0u0T8fbRDhx98z2MfXNdTKPN18bNx3tzlsG8ZiVGDSuH1cil3A7DMLAaOFgMHG575kPdSFuTrSicjCR3Uo0Nd109CV3eIMotBjTU2HHTUzs0u9dE8uzI4MQY8VikRP29H1yBjQfacKbLg5oSE368bj9cPgkCBzAMG97ZUBQZQQlxZe16JHJ+qu1G+MWI4yeeQZsroBvJNFUUJvRK1r2fiMJGS/WVkedg5DmUWdQ3RU9QgicgwhuQABlR/k6pYDPxWDG1Bph6LbpuWYWXj7TjxBvvYOJb68NGm58+sAWfPrAFjr/+HJsmLMCu+VfBvno5rMbhGDHEnFQ7iqKg2y/iwxNdONzqhN0kRDl6A/mRtibrF5WMJPdYuxssw4TzpZpPOzSV8caTZ0ty9HemyKTgSIn6xgNt4Xt98cMzcPsl8BwDLrQrHOoiw0FBfFm7HomcH5ZlYTYAkb5UepJM6005RhCpknZQ43a70dTUhJMnTyIQiJb6fec738m4Y0RhwrIMbEY1ZwUAfEF1B8cTEBEQYx8nJEOZxYC1M0cAM6/DhW98Cs8fbse5zW9hyrYYRpvP/ic2TViA/1twNYauWIbFk2tQXWIasA2HT5W2cgwQFGXVioIBOFate6NXaWs6klytZbyJ5NmJfo4lUc9U1q43SDJNELkjraBm9+7dWLVqFTweD9xuN8rLy9HR0QGLxYKqqioKaoqUdLamTQIHk8Ch3GpAUJLhCahHVd6g1M8MNVkqbEb8y+yRwOwb0Ob8HJ440Ir2TW9g1vbNYaPNL+3ZiC/t2YjWP5djw8SFeGLeVXBMvwTzxlbgmhnDwcWou9NXIq4oCiRF3W1gGAZBSQbPAGVmIWW1UDa39SMluUZGzUUJHW+YBHZgo1QNZLyJ5NmR9P05lkRdS1m7Hih2yTQdWRF6Iq2g5o477sDatWvx6KOPoqysDO+99x4EQcCXvvQlfPe739W6j4QO0EIRJHAsSs0sSs0CZFmBNyjB3XNM1feYIlmqS0wYP7wUO6bOxVvVDXjQ/03MadmD1QeacHWP0eZXd72Mr+56GadLqrCuYRH+bXIjyi6bhzuWT0SppbeGTSKJuKzIuOgJYKjdiP9cfxAnO92QBjCH1HLsEhGS5O495YAkywhIcjgHxcCx4FgWM2pLkzJKBdKT8caTonM9QWKIyM+6eBL1TGXteqOYJdP5VgoSRF/SShQuKyvD+++/j4kTJ6KsrAzvvvsuGhoa8P777+PGG2/EoUOHstHXjKFE4fTIhSIo3WOqeGabFz0BSF4fLm3ZhbUHt+LKox/AFvCGn3dsyHCsa2jE8WWrMW7ppVg0rhI2E59QIh76QJYVoMQkwMCxkBQFDm8QdhM/gDlkdtVUWppgam1OOZD6KVbf0pW165VilEzrRSlIDA6S/fxOSzogCL1eMtXV1Th5UpXclpaWhv9PFAeyrODRphZ0+0XUlJhg6rFYMAkcakqM6PZLeLSpBXKaOy0hQkdUI4dYUFtuQYXNCLMhsReUrCh49oNT8AQkVNoMMPIsWIaBkWcx1GaAm+Hxxrj5+P6n7sK8b/8Ft157D9ZPvBw+3oC6i2fxne3P4zc/uQHLrrsSb3zpO/jvxzai0x3A7UvrUTfUBl9AxAVPAL6AiLpKKyqsBsgKwm0xjGqqWW4V4PCK+N2bH0OMCMhyNXayrGDrxx2wGlUFF6A6WAOAxcDBauSw9eOOfu0sGFeJn316GhqG2eHxizjf7YfHrxZgTOcD6WuN9fjhCnX3S5YVBCUFsqygzCJg2aShKOvz+1KLEDc4iXetRM/RM1qPdb7J1domiFRJ6/hp1qxZ2LlzJyZMmIClS5fivvvuQ0dHB55++mlMmzZN6z4SeSQfZneRx1SSrMAdEOHx98/DSWS22e3vrZXEMAwkkxlvTl6INyYvhNnrxpKjH2DtwW1YfGyXarS59Wlg69Norq7HximLMerqtZg9ayJGVZhRaTVBhoL7X/oogbEnj5bz3Xjj0HnMGlUGq1H9ORdjF5qjKrsJRoGFLxCRU2NQc2zSNa5Mla811uOmBWOTqig8kLFoomsVIlqPdT4hE0xCr6QV1PzsZz+Dy+UCAPzkJz/BjTfeiNtuuw3jxo3DE088oWkHifySb+UGxzIoMQkoMQn95OKJzDZFOeIIq0efzTBqOOK32LBh6hK8PHkJZpcCU95/E8v2bcHln+zBtLYWtZrxm3/CruGTsHnqYuxeeQ3sdaMQkOQBjT27vAF0+0V0+0UcanPBH5RRao79HK3GLnKOGDA9O1y9u1yZGFemQzwperIS9Uyfo2eKRTKd7/cFgohHWkHNnDlzwv8fOnQoNmzYoFmHCo1iz/xPVlkTTxGkZZG/SLm4oihod/lh4FiIsuowHgkfVfVadSMPBzc9v2UBLF8wCVd8tRG7T17EPTuOwLbhZSxv3oL5Jz/C7LOHMPvsIciv/g/eHzUVwUmL0DR1EeTKSnAMCxkKOEb174ll7FliFMCxgCcgwSSoSbIsy4SLAobGrrM7gKYj7WmPT5lZKAh1Tao7NQMRb50kWnPF9nrN1/0ko+jiGaS8tgkiU6iicAYMhsz/UDXURMqa0RVmlJoNONYePQ6N4ytT9hVKZUx7K7W6UG03QAEDWVEgKwokSUZLR+I6JnYTj3/euiBK3h2UZOz85CI+fG9/lNFmCJFhsX30DLzS0IjNEy6D22yDwDHgORYTa0rw0GemhYMWWVHww380xzT2ZKDgrMOrFmPjWYgZKKnqhtrg8AZwzuFHTYkx75WQYxHPEyqe7cNAxFsnidYcgKJ6vebz/SfytRdrzZ3s9IJlAYvAFcVYE/knqzYJFy5cwH333Ye33noL58+fhyxHq1U6OztT73GSPPLII3j44Ydx7tw5TJkyBb/97W+xaNGipJ6rZVAzmDL/EylRWAYoMQvgWCZqHNqcfngCIqxGDlV2U1Ljk86YxlOVXHQH4AuKcAfiK6nWTqvBHcsnxn08ZLS57519qNn8MlYc2IrprUfDjwdYHk11l2DdpEV4Y9x8XDl/HL59xbioN/h4aqpOtx/egASzwKGqxAQTzyIoK2mPT+gUIJ5xZT7Xo9ZKpnjjcN7lg9svwWLgUF1iijM+SlG8XvXw/hPvtXc+jdc+QQxEVoOalStXoqWlBTfffDOqq6v7JYrdeOONqfc4Cf7617/ihhtuwCOPPILLL78cjz32GP74xz/iwIEDGDVq1IDP1yqoScZrJ9/fjLUidK/7TndBlJQ+OzUMfKIMlmEwocoWNjpVFAXHO9zwBNQPmLFDreFdinjjk8mYxjLiqxtqhcMbxLF2tR+Ri5wBYBJYTB5eGrWzkgi3X8R3nt8D5ujHWHlgG9Ye3IpJHSfCj/t4A96sm4Nts5eBW70KC2eMxvgqW9hJvK+xp1eUIcsKhpeZonZwWAY47/Jj8vCSlMdnWKkRpWbVEkEvhoTxPKGAaO+nZH2c4o2DAgXH2yPWXKU1/JgsyzhyvhsAMKHaFtWHQny96un9p+9rj2cAb4//W+0QS1G/NxK5JaveT2+//TbefvttzJgxI+0OpsOvf/1r3HzzzbjlllsAAL/97W+xefNmPProo3jwwQf7/b3f74ff7w//7HQ6NenHYMr8T6SsUaDgxAU3FAXwi0qPpw3gC6rHVHzPmbsvIIfl2fHGJ5MxjaUqkRUFt/1lF4aXmWHkWXR5g2pF4J7EY68o4VSnG0fb3El5U5256IPbF4S5bhw2jhuH5668AcPOtGD5R01Ye3Ar6i6exaoj27HqyHa4//4wXhs/H/8z50qY16xE47SReOgz08LGnl2eIP64tQUWS3SBv1AFY6uRx5FWF3aduIi5Y8uTHp8L3QH89Fo1SNNLzkg8Tygg2vspWR+neOPgC/RZc8HeNecXlR57BgX+YO86BQrz9aqn95++r73O7gAe3nwIViOf974Rg5O0gppJkybB6/UO/IcaEggEsGvXLtx9991Rv1++fDm2b98e8zkPPvggHnjgAc37Mpgy/xMpa1y+YHjXRlUbqb8XZXU3h2PV45DIx4DseBH1VZU0HWnv7TejHo1FYmUY1TSRZ1BuNcATkOALSn0vGyZSacUyDCptBgQnNuDl8ZPwzMqvYuSJw1jevAVrDm7DSOd5XHugCdceaILzrz/HpgmXYdP8q1CyajkWT1E/uEVFzaGJhYFj4PLLONbRjeoSE6xGDm0uX1Lj0+UNhk0r9YDWPk7x1kmiNRdSwilK/7UIFN7rVW/vP5GvvcjXnR76Rgw+0gpqHnnkEdx999247777MHXqVAiCEPV4Nqr1dnR0QJIkVFdXR/2+uroara2tMZ9zzz334M477wz/7HQ6UVtbm3Ffit3LJZJE98qzbNjLJ1JtFPq93BPwRCuRYo+P1mOa7PWq7SaUWQwos6j5Ft6gBI9fhCcgQY44me3rCxWCYxmUWQzoGD8Fj9dOwLE7/wPie+9i6taNYaPN65pfx3XNr6Pzmf/ExokL8P685RCHToBX4GA19n8JRiqpRFmGwytDFBUwjNo/i4Hr9y1Yr2tOax+nePOaaM2F/h9rLQL6Hbt46Pn9R899IwYHaQU1ZWVlcDgcuOKKK6J+ryiq8Z8kxf/Gmyl938xDbcbCaDTCaDRq3ge9eblkU9aZ6F6NAhP+OfKD3iSwMHBsOL/BZIjOYYg1PlqPaTrX4/pIxn1BOVz4L5EvlALVRqFuqA1fX1IHdmk92m7/bNhoc+a7r2LVobdR4XXii3s24Yt7NqHNVo4NEy/H5qlL0FI/FXaTAJ5jo641rtoabmNctRW15Wr7HGsAy7DgWCYcKOjVP0hrH6fIea2yAU6fhKAkqwo0BvCJCswCC0VRx5FnWRi4kJEmA6PQ//2jyxPEpBobZEXRTH6cjtw8WfLx/pNsv/X23kgMPtIKar74xS/CYDDg2WefjZkonA0qKyvBcVy/XZnz58/3273JNizL4LbF9bj3xWa0Ov0x1Sa3La7PSS5DtmWdA91rhdUABUCbKxD1GMey4Fg1x8EXlAccH63HNNPrMYx61GY2cIBN9ab62qKx+Om6A+joDvTzhbIYOFw/rzacdFxdYsJ1l44BLr0Zrx1YjWvfPoaxH+3A6v1NWHFkO6q7O3HTrldw065XVKPNSQuxeeoSHB5WjxKLIepaAMAyDK6fV4tfv3akX/vdPhE2E4dbG+t0l3zJ8yxuX1KPhzYdRkBUwHNyP/XT7Uvqk65XE5rX25/9EAdbuxFL5eCXFJzo7D3OYhjAZuRh4Fm0OQP91gLHAg5vELf9ZZcmr6F05OaptJPr959U3mP09N5IDE7SUj9ZLBbs3r0bEyfGl8Nmg/nz52P27Nl45JFHwr+bPHkyPvWpT8VMFO5LVuvU5EFtkktZZ6J7BRDzsag38STHR+sxzcb1fr/lKFrOdyMgqWqP2gorrp9Xi1mjhvT7+76Gm4qiwN3twaxDO7Dq4DYs//i9KKPN40OGYV1DI44tWxNltBl5vb5KqlD7c8aUw9qz02QSEvtm5ZrIOjU9NRDTrlPz+NYW/HzjIUhx3rlYRv0XyvdiGDVv6paFY/utxwqbAeddfs2k3unIzdN9rebi/Sfd95h8vzcSxUdWJd2NjY247777cOWVV2bUyVQJSbr/8Ic/4LLLLsP//M//4PHHH8f+/fsxevToAZ+fDZfufFX0zIesM51KrVpWFM5GvzO9XqlJwNhKC/yi3C8PJ17xPfUxGW2uAIYwIuYffB+L97yFZS07YBZ71XqHK0dhw+TFOHnlWkxefAkW1FfCbOAgK0pYSVVqMmBctbWfLJ1nWdhMfHiHQg9oUVG4r0QcYMLBS0CUoUANaMaUW9QEZVat+NzmDKBhmB1P3DgXB1td6PQEUGYW8PDmwzjUqs1rKB25eaav1Wy+/2T6HlNs1ZuJ/JJVSfe3v/1tfPe738Vdd92FadOm9UsUnj59ejqXHZDPf/7zuHDhAn784x/j3LlzmDp1KjZs2JBUQJMt8uXlkg9ZZ6J7jfdYOuOj9Zjm6np983AOnHXGNdxkGRZDLAb4AiyuuPc2yLgVP9n7CfDKOizd/SYWH9uFiR0nMbHHaPOj6nqsn9KI1qvXYtrlM3Hp2HIYhfhSdFGW0eUJoMsTgIFnYTcKsBo58HFUKblACx+nmBJxBn2CSTXZeoi1Nxk19Ho42OoKz13zaQeOtWv3GkpHbp7pazWb7z+ZvscUi88VUVikFdR8/vOfBwB89atfDf+OYZicJAp/85vfxDe/+c2sXb9Q0Jusk+ifh3O4zQVJRtw5CplgOv1BzB1TjoZh0yFfPQ3NZ76J+3Ydg2Hdy1i27y1c/skeTG1rwdS2FuDNJ/Dh8Il4ceoSXFhxDWZdNhlzRpcn3I0JiDIuiH5ccANmAwebkYfVwBfkt+Z4EnFFQVR+TVCKriSdjTICfUlHbp5OO7mC3mOIQiStoOb48eNa94NIkcEqndTDcVay1JSoBQvBAALPQpYVSBGfvrFMMFmGwYyRZZgx8hJIa2dhz6nv4t4PDsMaYbR5ydnDuOTsYciv/g921E7B36YtgWPVpzB33gTMrC3D8XZP3KMpb0CCNyDhAhOAxcjBauBh4lkcOOdK6egw0VFSNsc7nkScYdQ8nVBgoygIq5/iGa92dgfAs8h6GYF0ShzogcH6HkMUNmkFNfk87iFUBqN0Mh2lVz5N/6LnyAieY8FD/dCXZBkun4i6odYo6XYkHMtg9ughmD36UgT/ZR52nbiIv7+rGm1evb8Jc84cxPxTH2H+qY8gbnwE20fPwBOTG/HWpAVw20pg5lmMqrTFTGKWFVU1te1IO5774BROdXrCbufjqu0JlTr7zzr6mVM+sG4/bl9SjynDS7M63vEk4n0FmBfcfnR6mH7Gqw9vPhxlvOoVZbidfowqN2etjIDJ0KfEgTBwiQM9MBjfY4jCJ22X7paWFvz2t7/FwYMHwTAMGhoa8N3vfhf19ak77uaKbCQK55N4hnJ6MDHUmszMLvVn+tflCcJqYPGjtVMwdWQpvAEJkpzcS9EflPD+J53Y904zqje/jJX7m2IabW5oaETTxEvBlpbg7hUTccno8qjr9FVmCZxaXLDT44fHL8Fq5PspdSRZhtMbhKwgaXNTrcc7nkFmMEIOJfTpG8MApTH61qtK4lFVYsz4NRRvvts1bidXDKb3GELfZFX9tHnzZlxzzTWYOXMmLr/8ciiKgu3bt2Pv3r145ZVXcNVVV2XU+WxRbEENMDikk+moMPRs+hdrjhRFgV+U4e6pZtw3JyQe3oCEd1o68PLft2Lxnrew5tA2NLR/En48ZLS5acpi2D9zDRb1GG0qQExllgIFpy964Q3KMAssRpdbwHEs2J5cuVBtGGMMc0q/qIAB0DDMBi7iuCIb4x1LIs4wDHgW4Fg2ynhVYBn4pR7j1RiGlqcuetR8KJ5V7SuyVEYgnRIHemAwvMcQ+ierQc2sWbNw9dVX4+c//3nU7++++268+uqr+PDDD1PvcQ4oxqAGKH7pZPNpB77x9E5Y49RfCVkbPHbDnChlS6rPySapzlFAlOENSHAHxISeVABwpLUb973UDCPPISDJqDrdgiv3NWHNoa2o7zwT/rtugxlv1M/D9jlXwrNkGd455YTdbIAxIsnYF5Rx1tFbuG54qQUmQT16cHqDOOf0AQCMPBuVqyP3BGUAMLLMHKU8ArIz3pF5PbIMPPv+J+r9xDRe9QBQMKbCFlYe9e3bXVdPQrnNoPuKwvmgUPtNFA9ZlXQfPHgQL7zwQr/ff/WrX8Vvf/vbdC5JZECxSyfTUWHoTbmR6hwZeBYGnkWpRYAkK3AHRLj9InxBGX2/h4TNNgUWZgMH//hJeLl+Ip7x3YQRJ46oRpuHtqHW0YZPHWzCpw42wfnCz7F5/GXYOLUR+yfOgdligoFnISnqDgfLArIMSIqaNaMoCgIRqkZZVsCwiKi30tufWLtM2RjvSIl405F2PP0eE9d4NdTHRIaW5TaDZmagWpY40AOF2m9i8JFWUDN06FDs2bMH48ePj/r9nj17UFVVpUnHiOyih29eyfYhHRVG5HMMDAOHR+zxCGJRauHhl5ScKjcyGW+OZVBiElBiUgMcly+I3Se7cN7lQ6nJALtJCJttGnjAH1QgKTJMAo/uhin4S30Dfu/+KhZ0HsP8D17D6kPbUNPdic999Do+99Hr6DSXYOPEBdgwZTFax0xT5dE9QYooqQEVx7Dgo+RGqtJIUZTwwVUIIUYgGZqjzu6AZv5KkQxkvAoMbGiZat/08BrSmmK8J2JwkVZQ87WvfQ1f//rXcezYMSxYsAAMw+Dtt9/GQw89hH/7t3/Tuo+ExuRTEZROH9JRYYSe8+GJTniDMiJzcM86ALPA4pLR5TlRbmg53u8fuxC+VkBUC7qNHGJBmUXAWYcPkqwgGJlP0hNg8ByL3TXj8f7qcfjtiq9j5sn9WN68BSsPv4NKjyNstHneOgTrJy3EK5MasXvERHR0qxWO1YAg8sMtlMnSE9xEBDU2U3TgoCgK2l0+MAyDX2w6CFGG5msuofEqzyQ0tEynb3p4DWlNMd4TMfhIK6dGURT89re/xa9+9SucPXsWADB8+HDcdddd+M53vpMTg8t0KNacmlTQlyIoHSVT8iqMf//nPjzzwam4/fjivFr8579kp/p1/35nPt6JriVKEhxeEQoAnlWDEPW4RX2uiWdQXWIOK5ycviCCogyfL4BLT+zDmkPbsPLwOyj1u8PtnS4ZivWTFmFdQyP219RDjqiLHKsdFoDNxKs7S2YBJp6FKCvo6PZr7nuUeHz6r5HQ5pEkI44qKfm+6eE1pDXFeE9EcZHVROFIXC4XAMBut2dymZww2IMaPSiCMulDKiqMkEdQlycY9UEc+f8yi4Cd916Zsv9QLu41lWvJiowjbd2QFQVGLlr5I8nqvZoFFiOHmMNhiawo+OSCG7KiJv0GRBmcGMTC47ux5lAco81JjdgweRFaR41DUFTgCUjhMbWaeHxx3iiMr7b1M9z0iTJkRcGocgs4Nlp5pPWaS9V41ROUIMtq3wpNVacVxXhPRPGR1UThSAohmCFU8uEXpWUfFoyrxKV1FUmd+Yc8ggSOAccy4TwR1bUZam6KN4hX9p3L2I8oG/eayrX8QaUnt4XBsFK1iJwoyxAlBeccXjCMmrzrDyow9Ry/BERFHQ8AlTYjGDCQFBkflS5E0/h5uDfgx5JjO7Hm4DYsa9mBsRfP4dvv/hXffvevOFIxCusnN2LP5VcD48Zj9pghWDllGDhOvfaM2rKw4WaXJ4g/bm2BxWiAKKlFB1kW4BgmK2tuoDUS+VhndwC/2HQQNpOQ9Pzo4TWkNcV4T8TgJemgZtasWUkfK+lV0j3Y0YMiKNM+JKvCiPQIYtCTUxGxfFlGgdTzd9lCy/FOdK2QtxDDAJKiwG7kAXBw+YJgGCbsOcQwCjiWgayEVE1qoCcrCqwGDgALN0QAgGQy4tWJl2PX7KX4T48H8/e/g9UHtqLx+C5MuHASE7b9Bdj2F3xUXY+Nkxvx6NVrMW3hTMwfWw6TwGFCjWq2ueOTTrX2C9frSi1JgATVJ45n1OReLddcssarTUfaISbw5ioEVZ0WFOM9EYOXpIOaa6+9Nvx/n8+HRx55BJMnT8Zll10GAHjvvfewf/9+MpvUMXrwcslVH+J5BIWQe3YpRpRZMmonEVre60DqntD3jUh1T1/PIYHrdek2SiGXaICLKEbHMWw4T4ZlAbPAw1RZhv2Nq7DzshWQLl7E5R+9jTUHt2HhJ7t7jTbfegK7h03E/01djAsrr8Gsy6ZgzuhylJoMYWWWsY8LpaIo8IqyOk+ymudjNag5ObkgU1VdsfghFeM9EYOXpIOaH/3oR+H/33LLLfjOd76Dn/zkJ/3+5tSp+ImZRO6JlGiWmQXUDbXiUGu35l4uyUpBc+Un09cjCGDCuxmAAlFSUGoRsHb6sIzaSUTkvVaXMPAHlXBBOKPADHivkcXlhpWaMbbSisNt/efOKDDhnw28WmVYlGVwLAMDx8ATUKsDK4rSa/LIM+H5sRjVvgUkCSzDgGcZ+EQFZoENq4VUB3IWHVY7jq3+LNruvwP37PoY9nUv4crmJlx6shmzzh3GrHOHIb/2OHbUTsHzUxfj7LLVKDGb0dHtx1C7MSLVWFVMuXxB1A21obbcjA6XHxeYAMwCB2uP2WY2czgyUdUN9JyGGnvYODPy9ZDICFRr9PaaJIhckFaicGlpKXbu3NmvTs3HH3+MOXPmwOFwaNZBLRlsicKxJJoVNgPOu/z9VCCZeLmkKgXNlZ/M41tb8PONhyDFWOEcA9y9chK+1phdr7LtRztwxwt70OkOQFGUiLweBhVWA3593cyY9xppAxAyjTQZuLA5Y99x41nAL8ro9otR7SgAFBlg2MhwQn3MZlS/06jPUX+vKEpP/RnAauRQbjXCwDEISGoAYjFwuPOqCWGDzKAkY9eJi/jw/YMYsuElXP2RarQZQmRYbB89A+saFuHNhsvBlpfDbuQQlBHzepEwDBMOcCxZ2sFJZy0O9Jwvzh8V0wx01BAz1n/UGjWndrOA25fUa74O9fqaJIh0yar6qaamBg8++CBuuummqN8/8cQTuPvuu9HW1pZ6j3PAYApqEkk0ORaoshtxoTuQsZdLulLQXPjJbD/agduf/RBdniAiFzkDNaD7/fWX5ES+3hvURPSBAcqtBvwmRlATz7AxZMw4usICf1Du5yv0x7eP92tHQUQgBUQFVdFBjdLvseFlJnS41DXCM0BthTWm43eID45fwC82HYbt/FlcfWAb1hzchhmtH4cfD7A8to6dhXWTG7Ft0mWoHD4UX1s4pp/RZiwYhoFJYGEx8LAaeo/RtCCdtZjI3+mZ90/2ez2c7fLCHVArMvc12+RYBj9cMVGzwEbPr0mCSJesBjU///nPcf/99+OWW27BpZdeCkDNqfnTn/6E++67D3fffXf6Pc8igyWoSUaiOanGjruunogubzDtyqGZSkGzWb00sm9VdgOcXilcUbjEzOG8K5hT+Xq13Qi/GHH8xDNocwX69SEkRXd4gjDEMI0MiApKzDye+so8OPwiyi0GNNTYcdNTO/q1wzEMWp0+eAJqHZaaUpMaKLEsDDzw8Xm1Js2EKlt03wQGbc5A1BqxGXiMKjfDG5R7rAb63KuiRBlkKjLQHRBRdvYkljU3Yc3BrTGNNrddcgW4NauxsMdoM1kxglHgYDVwMBs4GPn+eSCpks5a7PucyHmIfD0oioID55zhPC4j33vEE5rTUo3KC+j5NUkQmZBVSffdd9+Nuro6/Nd//ReeffZZAEBDQwOefPJJXHfdden1mNCMZCSax9q7wTJMRl43mUpBs+knE9k3juUwxBr9wVdmQU7l6yzLwmwAIn2HYo1PSIqu7tBEf8CxDAuek9HtE3H8gicsRW8+7YjZjjcgISCpVYcDklo6z25SX/LegNSzo6PALypRXkmhvsVbI76ghG6/6kUl9ZRqPtrmxqkLbpSYBFVtxgIlJgFyXT02janDc1d+CdWnWrDywFasPrgN9Z2nserIdqw6sh3uf/wSr4+bj/+ZcyVMa1eicepIjK20Jhxbf1CCPygBbrVqssXAxTUvTYZ01mLf50TOQ+TrocsbjKpoHVkvKTSnWpUX0PNrkiByQdp1aq677roBA5jnnnsO11xzDazWxG9QhLbkSqKpZymoHvqWTh8ipeixYBn0k6LHayck9Q5JuiPNHEO7LQOZPMYaH5PAwSRwqLQZ4Q2oAY7TH1RNNbn+HedYBuUWAa21dbB9eTnW+0Qcf2M7JmxZjzUHYxttbp5/JeyrrkbjlOGoLU+sUAtKMhxeGQ5vEALHwm7iYTXyMT2oskm8eYg0+AzlK0WXF+g/p1r3IQTJs4liJ+Pie4n4xje+gfnz56Ouri6bzRB9yJVEMx9S0Hjb431/X2YWwn0zMix8PccmPMvCJLC6la9HStEZ9CbthnJiYknR47XTV9LdV+4NDGzyOND4mHuOgCZV22HkWUiyApZngD6H2gFJrS48vNSCCRNtwIzPovMb1+Cvh87j7GtNmLx1I1YfehvDui/0Gm0++zNsmrAAryy4GhUrlmHx5GGoKTUl7E9QktHpDqDTHYBR4GAz8LAatc3BCdFXyTSm0hJzHiKDKwYhBV4voTkdVmqOqZhK5Uio0OXZdPyVPjR2KlkNajJ0YCDSJFcSzVxLQeMpOhrHV/ZTm9QNtaLCZsCJC15IshxlHRBSEM2oLc2qTDWd8QlJ0bs8QYg9kUEse4dIKXq8dkwCCwPHhnNqTIbeD9eBTB5TnbupI0oxvtquytcNHBQwkBUFsqxESbfHVffu2pZbDfiX2SOxe+gqPDlmCv7r/Ncx+ZOPsHr/Vqw8/A6Gerpw/d5NuH7vJpz/s2q0+Y+FK1C9fAkWT6rGULsxYZ9CR1QX3GrwpWWScSx1mt0kYIhVwEVPMGoeyswCznZ5w0dQkaMtK2rlZ4uRwz8/PI3jHe4B13ai5N1ClmeToWb60Nj1ktv9WSInsCyD2xbXw2bk0Or0w9vjb+MNSmh1+mEzcrhtcX3GUXyu2gF6FR0HzzlhNfKoshthNfLYe8qBhzYdxr7TXVG/P9TajdMXvXD7g/D0qE5Cn2WegARPQETj+MqsfpNJZ3x4nsXqqTUAQu7X6Pf/1VNrohJK47XjE2VwLAuOZcBzDHxBOdx+myuAcqsB5VYD2pyBjOcusg9trgACkpqoLCkKLriDsBo4XD+vFmyfbYrdJy/i168dwemLHpTbzbgwcx7+8Lk7sOR7T+PLX/gpnp++HF0mG6rcF3HTrlfwq/+6HV/8whLs/dev478ffh4v7T6Di0kcpXgDEi50+3Gy04MzXV50eQIIiP0TnpMhpE5zeIJge2oBsSwDhzeIkxc8kGS53zyYe3J9FKhVn2VF3TkMiEo40D7c5kpqbR8858K9LzZj+9GOhPOQ7deklsR7fSe6V0KFxi6ajA0tE2G327F3717dHD8NFvVTiFxJNLPdTjxFh6IoON7hDu9EjB1q7TVslGUcOa+aPJp4rt9ODc8xmD6yLCcmfamMT+hePzxxUf1Ainh1sgxgFjhcMnpISoafUd/2kzB5zGTuEt3rJaOHRCUY91VM9S3M19EdwPAyM+YOs8KzYTMu3fEarvr4PdgjjDY/KRuG9Q2LcPSKNahfOh+LJgyF3SQk3V+BY2E18upOVhJJxsmo06xGDjNGlqm7LhFjEFmnJrT7ZjPxKLca4PKJSa/tZFRMhSTPJkPN9BlMY5czl+5EUFCTf3J1zprNdppPO/CNp3f2U7d4AxJOdLrDP48ut/aoeNTHPrngBqBgdIX6gRDOqTGoOTYev4jHbpiTE7VHsuMTea9GnkWXNxiWopeZBfjExP1ONucosn2t526g6ymK6vC943gnfvD3vTAb1Hvti0+U4QuI+PGnpmF8tRXH2t3Ytu8kAus2YOGHb2LZ0Q9gFv3hv/+4ohbrJzfixJVrMGnxXFw+rgIWQ/In7DzLwtJTyTi0jvry4odn8P2/7QHLMjFzkURZ3Q37xWdnYEK1fcCKwmMrLPjmsx+mtLYBwBuUBly/hZJjEe/1HSKZex2sDKaxy5lLN6FvciXRzGY7map7JFnpkTL3vuhzrQJJdnwi75VhGAzpk9CZruFnsiaPWjDQ9RiGgdXIg+kx1zQLXE9CdPT3KwPHwKUocPgCYBgb6qtsqL9yMpRlDTjc9nX8dM8JKK+8giV73sLiYzsx/sIpfG/bM8C2Z7C/qg4bpzTi7PJrMHXhTFxaVz7gTowoy3B6ZTi9QXAso+bgGDmYBS78DThZddo5hxefmT2y3+M8z0bJtpuOtKe8toHk1m+hyLNJsZU+NHb9yWpQM3r0aAhC8lvBhPYUyre1RGSq7uFYJuyHFNqpCalAysxCTMVJvsiWeiXXuzHJUG4xwMCzkBQFJoFTHbxlBbKiBjghxVSpKfpeGYbBpJoSTFoxDfLVU7H/zO340e4WGNa9gqV738LCT/ZgyvljmHL+GPDWk9g9bCJemtqI9pWfwqxLp2DumHIYBihyJ8lqcrPLFwTLMLAYOFiMPIaVmnvVaYxahbm3EvPARqkJVXosC19AzbUJVY+OtbaB5NaBFgUFc/F6KBTFlh7fSwtl7HJJWkHNjh07IMsy5s+fH/X7999/HxzHYc6cOQCAjz76KPMeEmlTLBnxmah7ZAVodXgRkJR+OTWjyi14ePMhHGt362Z8sqFe0XodaHW9WPfK99S5kWQZ3d0i6oZaoxRTfWEZdTdi2shLIK2ehb/vugk/ffsg5n+4BasPbcWlJz+KMNr8I3aMnIy/TVsCx+prMGfuJFwyqmxANZSsKOj2i+j2i5gxohRWIw+nT0RQUlTrCUQrmuIZpcYat5BK72SnB6KkhHO/gFBwh35rO5l1kM4c5ev9ohAUW3p9Ly2Escs1aamfbr/99phu3GfOnMHtt9+ecaeIzCmmjPh01T02Iw8ogCegHkVFqp+6fSJOX/TiUKtLV+OjtXpF63Wg5fUS3et5VwAlZh7fu3I8qktMSSXx7jvdhXX7zqHTZMfbSz+N73/9V7jie0/jviu/gR0jJoOFgvmn9+M/Nv4eD317JUZc9yk88/Uf4bEXd2D3yYvh6sgJ+8wxWDy+90OsrzpNQX91WqJxC6n0un1ilEqPYdSjudD1I9f2QOsgnTnK5/uF3hVben4v1fvY5YO0EoVtNhv27dvXLwH4+PHjmD59Olwul2Yd1JLBkihcrBnxqah76oba4PAGcOKCB5Ks9FM/+UQJLMNgQrUtSsGil/HRQr2i9TrI1rpK9l6DkmoR0e0Xo6r0Av29pyKVVJIio9XhR627A0v3NuHqA02YeS7aaHPb2Fl4a+ZSiKvXYsGssZg8vKSf/Dyynf1nuuAXlX5GqSaexazRQ/D0V+eB64miE42brMg40hZfpacogEFgYRG4pNZBOnOkl/cLPSq29DI2A6HHsdOarCYKG41GtLW19Qtqzp07B56n3ON8k6n/i15ZMK4Sl9ZVxDzXvnlhXdTvZUXBbX/ZheoSE4x8dEVhRVFwotMDRVHgDyo9XkkqehmfRPeaLFqvg2ytq2TvVeBYDLEaMMRqgDcgweUPwu2XoChKP++pSDiGRYXNiE5DNSY9fD92dfvx1LYPMeK1dVi9vwkN7Z9gWcsOLGvZAf///QZv1s/Fn2ZdAWbtaizqY7QZaqe6xAyBY+DyieF1ZTfxCEgKjra58Mah85hZWwaLkcfRtu644+YPKlAUBQyY8IdmZOVrnyjD7QvirqsnodxmGHAdpDNHenm/0GLNa41exmYg9Dh2+SKtCOSqq67CPffcg5deegmlpepEdnV14d5778VVV12laQeJ1CnmjPhk1T2RqhKGYaIMG12+IID0fI9ySabqFa3XQTbXVar3GrJnkK0K3AERe051xfWeAnqVVD5RwtJJVVg6aQW6v3wlmo524PEtOzD6jXVYc2Ar6jtPY+WR7Vh5ZDvc//wl3hg3D/8zZxmMa1Zj8bSRcPgC4XZYhkGpWejTDuBSFFz0BMJ5OIfbnPAFZdhNapXlyB2gkMqJYdSifHZjDJWeApTbDEmZz6YzR3p6v9CbYktPYzMQehu7fJFWUPOrX/0KjY2NGD16NGbNmgUA2LNnD6qrq/H0009r2kEidSgjPvEYaOV7pHe0Xgd6XFcsy8BuEjC+yg4Tz0JWVLVb31P1WEoqm5HH8ik1WD5lLRxfXYENR9rDRpure4w2rzm4Fdcc3ArnXx/CqxMuw3uzl0EeMQ0egVNztvoQq51SkwE8q7qbGxUWYNQEZ5ZhwDEhuwpt1mI6c6THedULNDaFR1pBzYgRI7Bv3z4888wz2Lt3L8xmM2666Sb867/+K0m4dQBlxEePQbWdgV9Uwtv6Bi5kKqiN75FeSXYdNNTYk5K152NdJSujnTK8BON6vKdqSowAVIsGWVbzVmJ5T0VSahawesbwsNHmC4fP48xrTZjc1Gu0+dmP3sBnP3oDneYSbJpwGTZPXYyD42fBajFC4Ni4Hlfjqq2orbD25vsoPb5YUNCbzqVA4NRxjKwqnOqYJjNHk2rskBUFTUfaUW4xoKHG3vtaKWHgD/a+VowCk9d5zTf0Xlp4ZLWisN4YLInCQG/GfrdfQplFgJFTa7N0eYKwGTn87NPTiiaBLB7bj3bgjhf2oNMdQOQqZxj1W7qBZyHJKOrxGWgdfHH+qJQME3O5rlKV0cbr20V3ABYDh39bPgHTR5al1IfzTh+aDrXh/KY3MX37Zqw6pBpthmi3lmH9xIXYNGUx9o1qQInFiLuunohZo4ZEXSfkceUJSLCbBBg4BgFJDYI4RlU5yYpqimniWYiyAoc3CLuJT3lME80RzwJD7UZc6A70M87849vHe14rveUPGIZBhdWAX183M2/zmm/ovVQfZN0m4emnn8Zjjz2GY8eO4d1338Xo0aPxm9/8BnV1dfjUpz6VdsezyWAKaoDBkRGfiOigJvqNutxqwC0Lx8b1RCqm8UmkGnvm/ZPo9osYYjHAwLEISDIuDvBmnYt11ftBom3f+iYYp8LZLi+aDpxD14bXcMl7r2Llke0o83X3Pm6vxPpJi3Bw8UrUXtWIxolDoypC7z55Ec9+cAqnLrgRVNRjqtoKK66fVwsA/R4bVWHFjQtGo3F8FcwGbsCCgQONQ4XNgPMuPyRZ6TemHAsERBndfrHfF4ByqwG/0SioSXde881gfy/VA1kNah599FHcd999+N73voef/vSn2L9/P+rq6vDkk0/iqaeewltvvZVR57PFYAtqgMLZ5tWaSClmdYmx35Z6mzOAhmF2PHHjXBxsdRX9+PRdBw01dtz01I60parZXFeZymiT6ZssK+gOiOj2ifAFpZT7eOKCG03NZ+BYtxELd72B5X2MNk+U1ahGm0vXoO6KS7Fw/FCUmAXIPUothy+AUpMB46qt4cThRI8BqvrLbOBgMURbNyQax9A4lJkFPLz5EA61uuLKygFg/FArAhJ6Xys8gzZXQBPZcqHIo+MxWN9L9UJWg5rJkyfjZz/7Ga699too08qPPvoIS5YsQUeHPgu7DcagZrAymIze0kHP45PrviWqfzMQiqKoRpvNpxBYtwGX73oDV8Yw2tzQ0IhPrlqDiYvn4vL6ClhjJBmnAsMwMAtqcJPMLk6iMVXNX7sBMBhTYe1n5qnVeOt5zRH6J6t1ao4fPx5WPUViNBrhdrtjPIMgckshSTHzgZ7HJ9d9i6x/4wtK6PaLcPvFpCoMM4x6DFG/rAHKFZNwuO1r+Mmek8C6dVi8+w0sObYL4y+cwnfffgZ4WzXa3DB5Ec4u/xSmLZqBS+sqkqqW3BfV6VyEJyACbvUeLAYOFgMPk8D228VJNKaRsvJsljjQ85ojioe0gpqxY8diz549GD16dNTvN27ciMmTJ2vSMaKw0NvWbKQU08hEF98zCWzOpZi5Gp947SQyUtRaqprpveZTRmsSOJgEDhVWA7xBCa4e+4JkNrR7jTanQr56CvafuQ0/2t0CYd0rWLp3CxZ9srvXaHPLU9gzbAJemroY51dcg0sum5qU0WY8gpIMh1eGw6sacIaOqSwGHlzPWCUqcaClrDxELteclujtvYxIjbSCmrvuugu33347fD4fFEXBBx98gOeeew4PPvgg/vjHP2rdR0Ln6FHNEJJi7j3lgCTL/crPcyyLGbWlOZFi5mp84rUTZSMRNlK0ocJmwDmHX1Opqhb3qgcZLcMwsBh4WAw8JFlBt0+E0xdM+niqr9Hm3tPfwf/b+TEs617GsuYtuOxkM2aeO4KZ5470M9qcPXciZo8aMqDRZjxkRYG7Z7cJ8MMocBhRZsLYSisOt3X3G1OjwIR/NvLalDiIbd6ZnTWnJXp8LyNSI2310+OPP46f/vSnYWPLESNG4P7778fNN9+saQe1hHJqtEfPaobHt7bgoU2HIckKeI4B2+PaLUoKOJbBD1dMxNca67Pah1yNT7x2zrt8cPtVF/PqElM/xQsAzWTtWt6rXmW0vp7dG7dfhJzGW6coydh18iJ2fXAIZetfxvKPtmDe6QPhxyWGxfZR0/HG9MXwrPkU5s0ehxkjy8BpsFMQkpV7AzLKrAJMHIuArISl3gq0WQuJ1oHWa05L9PxeRuRA0h2io6MDsiyjqqoqk8vkBApqtEXPaoZQ3/ad7oIo9Te05DkG00eWZbVvuRqfeO0oUHC83Q1PQA1qxlZaowq7tTr9GFZqRKlZwLF2d0ZS1Wzcq55ltJmqpwBVQv3B8U7sfbcZQze9jBX7o402gyyHbWNm4a2ZVyCweg0uv6QurtFmsvSVlRtYFnVDrbhtST14ls2JiapWa05L9PxeRqhkNVH4P/7jP3D//feD4zhUVvYuQofDgVtvvRXPPfdcOpclCgw9m72F+lZlN8EosPAFInJqDGqOTbb7lqvxideOL6Aeu/E9eQy+oBxWtoTav9AdwE+vnQaWYTLKIcjGverZpI9lGZSYBJSYhHB9F3eK6ikDz2Lh+EosHL8U3n9txPvHLuDJbbsx8tVXwkabVxzbiSuO7YT/pd/grfo5+NOsK4DVa7Bo5mhMqLYNKOvuy6xRQzCjtiymdFzgWPzqczPwSYcH7qCISqsxKyaqWq05LdHzexmRGmkFNX/+85/x2muv4ZlnnkF9vbp9v2XLFnz5y1/GiBEjNO0goV/0rGaI7BuDaEPLXPUtV+MTr52QqoVj1e3+vsqWUPtd3mBSZonp9KFvW6neayGY9Bl4FuW8AeU96ql0jqfMAoclE6uwZOLVcN+wDE0tF/D4Wx9EGW2uOPIuVhx5F55//hJv1M/D43OuhHHNKiycNhJ1EbtwA8EyDCbU2Pr9PijJCEoyKu0GDGWMMPIsnL4gzAYORj45hVay60CLNaclen4vI1IjraBm3759+MY3voGZM2fi17/+NY4cOYL/+q//wt13340f/ehHWvexKMm3GkYLklWpdHYHwj4zmbaf7P3owYguSoHF9t8t0mp84t1rSNUiK7HNO7Ucg2yNt9brN9uvu5B6qtJmgDsgodsnwhtMrXqx1chj+eRqLJ8cYbT55naMf0s12hzlaMPaQ9uw9tA2OF94CK9NuBSPzb0KtjVXo3HKCIwqt6Td/3gFAHk2uvBfvDFLds3nW+HUFz28XxDakFZQU1paiueffx7//u//jm984xvgeR4bN27EsmXLtO5fUZJvNYxW7QykUml3+cAwDH6x6SBEGRm3n8r96EFBE+pDvLweABB4NuPxiXevJgMLA8eGc2pMQm9Qo/UYZGO8tV6/uVS2MAwDm5GHzZieeipElNHm16/B3w+fx+nXtqJh60asObgNw7ov4DMfvYnPfPQmLj73M2ycuADrLr0aQ1ZeiSVTajCs1Jx0W1H5Nj25LiEbh1mjhsDlU41BGYaBSWBhEXhYjByEiN2NgdZ8KJdNbwaQeni/ILQh7UTh3/3ud/jhD3+IT3/609i1axc4jsOzzz6LGTNmaN1HzdBDonC+1TDZaydapdKeQHWTK2WNHhQ0iRRYCgCLwGLEEIuG4xNvHnhUlRizbkCp1XhrvX71omxJtbhfPNpdfmwJGW2+symu0WbzwhWounoplkyqxlC7Me71Ig03S0xqPZmgpMDpC8Ji4HDnVRP6mXSGEDgWViPfEzhzulAdpoMe3i+I+GRV/bRy5Up88MEHeOyxx/DZz34WXq8Xd955J5588kk88MAD+MEPfpBR57NFvoOafKthtG4nRCyViicoQZYVjCq3ZNx+JveTTwVNqN97T3VBkqO/tUqyAlkBrHFUSenMTyLjylwZd2ox3lqvXz0qW9SKwGqAk2xxv3iEjDYvbnwNl7z3GlYe3o4hPlfv4z1GmwcWr8KoqxaicWJVlNGmrCj44T+acay9G5U2AxhEjA8UdHQHUDfUhoc+M21A5RUD4O5/NuPAWQckWUFQVmLWh9KrikjPirvBTlbVT6Ioorm5GcOHDwcAmM1mPProo1izZg1uueUW3QY1+Sbfahit2wnRV6XS2R3ALzYdhM0kaNJ+JveTTwVNqN/VJSYY+d6qxqKkoNXpBcfGVyWlMz+J7vXmhXU5GQMtxlvr9atHZQvDMLAaeVgzPJ4CgOFlZvzrgjpgwTdw8sIN+P/2n0H3+s24dMdruOrIexju6sDXdrwI7HgRJ/5Yg3UNjWhZugp1V1yGheOHotXhx6kLbpSYhKiABgAYMLCbBJy64MbRNnfMBONIDrd243h7N8qtRhh4BgFRgawoYRsHn5h91WEm6FlxRyRHWkHNa6+9hm3btuEHP/gBWlpa8Pe//x0jRoxAZ2cnXnjhBa37WDTkWw2jdTuRRKpUmo60Q5ShWfuZ3k++FDRRCiymV4Hl8gUBqNvyiVRJ6cxPvHvN5Rhk2pbW61fvyhaOZVBqEVBqEcLqqW6/mNbuzagKC25oHA9l0Tgc6/gKfrnvFPzrN/YYbb6P0V2tuP3dF4B3X8DHj6lGm80Lr0a3MBS2OCabBo6BS1Hg8A08Pg5fAEFZQQnHgAETVaE4IMlgoSbdtnf7418kzxSC4o6IT1pBzT/+8Q/ccMMN+OIXv4jdu3fD71cXqMvlwoMPPohFixZp2sliIVcZ9vnO5Ne6/XzfT7roQZVUiAzm9RPpPeXyi3D5ggiIqe/eMAyD+qGRRpu34Kc9RpuNe97E0padUUabB6rG4pWGRrw5fQmcNSNhNfLho6aApEBgGJSaBh6fUpMBAqvm4/S1XIAC+EQZHIBAUMbpi54eKwoORr6/CSdBpENaQc1Pf/pT/OEPf8CXv/xlPP/88+HfL1iwAD/+8Y8161yxkasM+3xn8mvdfr7vpy/JyoKTVSUpigKXLwieZWEUmIzuJ17fRFHGK/vO4UyXByPKLFg7fRj4HvPEXMmm0xm36hIG/qASlgWnMz6Zrp98GByyLINSs4BSs5B2cnFfefZXr54C9Bht3rf7GIT1r+CKPW9h0Se7Mfn8cUw+fxw/bFKNNtdNWoQ3pi2Gt2YYfAEJ9VV2jKu2DtiO3SSgttyCYx3umPk5Ll8QdUNtGFdtRUCUERAD6PKotXMsBg7mHsl4ur5X2YSMLguDtBKFLRYLDhw4gDFjxsBut2Pv3r2oq6vDsWPHMHnyZPh8Ps07+p//+Z9Yv3499uzZA4PBgK6urpSvke9EYSB3Gfb5zuTXuv18309kP1KRBSdSJXX7RIBRkytDyZQMw6DCasCvr5uZ8v3E69uoIWas/6gVLm8QMgAWgN0s4PYl9ZgyvDQnsulYppoDjdsdL+xBpzsARVEyHp9014+eDA4VRQnXvvEExIR/O5A8G1CT1fee7sIHOz6Gcf3LuLpZNdrklN6doQ9GTsa6hkacWbYaVy6d1s9oM1Y7ZRYBF9wByApgNwkwcAwCkhrQDKSkCmHg2fAujklIrvBfNtHTOhisZFX9VF9fj8ceewxXXnllVFDz5z//GT//+c9x4MCBgS+SIj/60Y9QVlaG06dP43//938LNqgBcpdhn+9Mfq3b18P9pCMLjtXvCpsBpy96e3Inev+WYYByqwG/SftDO7pvZ7s8cAfUDymhj7yWYdQ6KBzLZFU23eb0wxMQYTVyqLInJ++PDmoyH5/QNVNZP3qRgcciKMlq7o1P7MnJ6iUdefbOTzrxk3UHYOrswIrD72Dtwa39jDbfHTUNb0xbAvfqazBv7ngoioLfvv5xzHZYBqiwGtDlCSKoqMdXfYOqZOFYpqfwHw+zwGli7pkKel4Hg4msBjW/+MUv8NRTT+FPf/oTrrrqKmzYsAEnTpzAHXfcgfvuuw/f+ta3Mup8Ip588kl873vfK+igBiiOisL5aD9f95OpLDiy32VmAQ9vPoRDrS5U243wixHHKzyDNldAE8myrMg4eM6l5u4AMAps+DhAkiUEJPX3k4fZwbLRhfm0kk0rioLjHRGmmkOt4T7EayfyWlqMT99+JrN+9CgDj0VIGu7qqVwsyXLK8uxISXeF1QB/UIY7IKKsow1XfNSENYe2Yea5I+HrhIw2N0xuxFsTL4O5cgjMAhdlpNrRHUBdpQ03LxoLly8YVZ04U0wCFz6qSta+IV0KZR0MBrIq6f7BD34Ah8OBpUuXwufzobGxEUajEd///vezGtCkit/vDycxA+qg6IVcZdjnO5Nf6/bzdT+ZyoIj+9182oFj7W4MsRjAsizMBiBS/aSVZNnhERGZghE6wlH7zAKQoQBw+MSouiVayqZ9wT6mmoGB5euR19JifCJJdv3oUQYei77S8A+OdeJUpyclefbRNndY0s32qPTMBg6wjcKW0V/Ci0s/j7JzJ7HywDasOrgVk88f7zXa3ChgS91srJ+8GDumLIBQYoORZ9V2Ot1gwWDumHJN79kXlFRndDfC9gvZ2sUplHVA9JJWUAOoOS7//u//jgMHDkCWZUyePBk2W+IaBrnmwQcfxAMPPJDvbhBFgJay4FxJliNrnihQg5rQ51zk/mys2iha9SFZU83IdvQgwdZDH1KFYxkEesbbYuCgQN2FQcRcx5JnR8qw+8IyDIZYBFwYVouhX/oRtgVl/LHpA4x6TTXaHNd5Gld//B6u/vg9eDYY8Ub9PGyc3IhdDZfCKwjo8voBZO9zQZRldPtkNT8NgFFQE421ysUpxHUw2Ek7qAHUhOE5c+ak/fz7779/wKBjx44dabdxzz334M477wz/7HQ6UVtbm9a1iOIkHwaZuZIsR3ryMFCPBSS5Z7eGUWL+nRZ9iDQyDOXupCJfz3R8Es1pvg1Rs318Guq3KCswCaqyTlbUpGBFUWLKsxPKsNEr6a62mzGhxoarJq/F7lWL8OmXmzH23HEs39+EtQe3YnRXa9ho02Uw49Xxl+LtY1fiyNqVaJw6AqMq0jfaTBZ/UII/KEUpqkwGDpY0FVWFVA6AUMkoqMmUb33rW/jCF76Q8G/GjBmT9vWNRiOMxvh+J8TgJl8GmbmSvJdaeJx1qAGFAiAoKQCUngBHhQFQaop+G8ikD32NDAH1QzW0e2AyDGyqmcn4JJpTAHk1RM2FgiZWvzlG3cWRZBndbhF1Q61R8uxx1VbUVljj5uFEyrBDzBhVignDSnGMH4d/TGzAn723YPQnB3BVs5qDM9zVgc/sfwuf2f8WLr7wc2yacBnWXbYcQ1Yux+LJNRhelrzRZrrIioJuv1rIEEhPUaW3chLEwOS1GEBlZSUmTZqU8J/JZMpnF4kiJaRoOHjOCauRR5XdCKuRx8FzLtz7YjO2H+2I+nuWZXDb4nrYjBxanX54e7ytvEEJrU4/bEYOty2uT+pbt5bXSnQ9vxh72zxSGWAz8mhzBTTpQ+P4Srj9EjwBCYB65MQwTDioAtQcm4HaSXd8Es3pHS/swR0v7MnLfA/Ut1jtp0uifp93BVBi4nHnlRMwvMwMm5EHwzBgGQbXz6uFxcChozsAnyhDVhT4RBkd3QFYDByun1cbleQb+ZwuTxAmI4+Lk2fgyX+5HVd+50l8/oaH8eQla9BuLcMQnwv/uu9V/PKx7+PrX2xEyxduwu9/8iT+9sEJtLtyV1k4IMro8gRwtsuLExfcOO/yodsvQk5Q+0frdUBkn7RdunPNyZMn0dnZiZdffhkPP/wwtm3bBgAYN25c0rk8elI/EflDLwaZuZC8e4ISfAERAUmJShpmGcAssKgbakOp2YBj7Zn1IZF5p4FjoSiAQWBhEbik20llfBLNqSzLOHK+GwAwodoGlkle6aVHg85kSLbfkty7m/FeS0dvzZkkZdhRdWr6PKem1ISmA63o3PA6LnlvcxyjzYU42LgSI69qROPEKpRbc3+MwzAMTAILi8DDbOBg4Pt/Ech3OQkiy5LufPCVr3wFTz31VL/fv/XWW1iyZElS16CghgBU9dE3nt4Jq5GPuQ3tDUrw+EU8dsOcmIoGLfMisil5jzQWNfAMHB4RQUmGwLEotfDwiwo8fhGPfmk2WIbJqA+RYxpp3smzLEwCC58ow+0L4gcrGlBuMyTdTrLjk2hOvQEJn1xwA1AwpsIWVl+FH8/yfGe63tIl1X4HRBkOTwC7T3XhoieQtAy7b+XiWM852enB1v1n0L1uM+bteB3Lj7yLkoAn/PiJshqsb1iEo0tWYewVC7BowlCUmIXMBiBNBI7tqYvDRUnV810eY7CTVUl3PnjyySfx5JNP5rsbRBGgJ4PMbEreI41FWYbBkD7fgo2cAoesoMsbxOIJQzNqN555Z29bLBwKUG4zpNRWsuOTaE5DxekUpb/6Kty3LM53vhQ0qfbbwLMYWmLCVZOrw7VvBqpcDKhHUQO5d48qt+BLi8ZDWTgOxzu+gl81n4Z/3QZcvvN1LGv5AKO7WvHNd/8GvPs3HH1sJNZPbsQnV67BxMVzcfm4SljjmG1mg6AkI+iV4fQG1bUscOEgh2Tb+qdgghqC0Ip4Sp1QzQu9KxoSfWOM9HiSZYBjlJwoN5IZU54BOrsDaDrSnpVdqXgqlZDiKpb6CshMTZUMySpoyswCmk878r4TEFn7JiipH+7dKfpOJbp23VAb6q6YBGXpRBxp+xp+uucEsH49Gne/gaUtOzGu8zS++/azwNvP4kDVWGyY3Igzy6/B1IUzcWl9Bcw5tE1Qixuqwd0F0C5OIVAwx09aQMdPBNCb49BXqRPK/+A5BtNHlumySmgiBc3+sw78fktLlMcTwzAwcCzqhlqzmssx0JgCCgReldZmw2OKZwGvKENRFNQOsWQnpybNfvfm1LhQU2KMOQ/DSo29uU069BZSepRETp8If1DS/PqyouDAWSe27z4Obt0ruGLvW2g8/iEEubetPcPGY9OUxTi/4hrMvGwa5o0tj5n/kitCuzjNp7vw5Luf4Hi7W5dzVywUXU6NFlBQQ4R4fGsLHtp0GJKsgO/jicSxDH64YiK+1lif725GkciDRpLVb9Sygn73owCwCByGDzFn1Qg03piqUnLAauAwvMycE4+poXZT1L2GTn4kGUkbWmrp+ZPIULO3b0pBeAv5ghKcviDcfgnZ+PiQZAX7Tnfh/V1HYV73Mq7ctwULTu7rZ7T56tQluLjqGsyZP6mf0WauiPTZKjWr8yr2HOnaTbzu5q6QoaAmBhTUEMDASh2OZTGjtlRXOzWJFDSSJOFgazcUAEaeidqJkBUZAVEN1CqtAiQwWVFuxBvTUJ0aWVGDmmS8n9IdB0VRcLLTC5ZFTJUVAE3UVOnucsVS0NQNtcLhDeKcw1dw3kKSrNawcfnEmFWptUCUZHx4sgs7PziI0g2vYPlHTZh7aj/YniIBsYw2Z4wsy4npZaRnVmyfrSAm1tjwxFfmwmygTI9MKbpEYYLQipCfS3WJKa5SR29+Lok8aJw+KaL2TPRjLMOC59TaMNfPH4MZo8qycuYfb0xFSUGbywcOSNr7KZl24nnxVJUY4fYFcdfVk2KqrC6tq0gq9yEbnj8LxlX2a19WFNz2l10F6S3EsQzKLAaUWQzwBEQ4vcklFqcCz7GYN7Yc88ZejsBnLsOOTzrxwrsfoXLjy1ixfytmnTuMhSf2YuGJvQhu+G+8PWYm/jxjKYJr1uKyWfWYMqJEExPNWER6ZsX22eJx7Hw3mg53oGG4XfXUElS38Vw7jQ8mKKghBh1JKXV05ueSSEET5fEU4e8UgmUACQDLImOVUzL9ixxTly+YsvdTsu3EYiCVlRZqqnT6Ha/9piPtReEtpFbq1T6xOBIDz+LycZW4fNwSeL+wCO8fu4A/b9uD4a++jFUHtmHK+WNYemwXlh7bBf/L/4UtdbPxp1nLgDVrsHDmKEystvcLHDMhkWcWEO2zJckKun1ij0eVP1zd2CxwMAmspv0a7FBQQww6CtHPJVGfozyeYrw3yooa54woy573Trz+8SybsvdTOu2ke73B0k6uEDgWFTYjyq2GrCYWmwUOSyZWYcnE5XDfcAXebrmAPzbtwOjX12H1ga0Yf+FUr9Hmi7/EG/Xz8PjsZTCsWYVF02r7Jc6nQ7KeWZE+W+HHRBkBMYAuqJJ4U4RsPJYXG5E8FNQQg45C8XOJlGcPKzVjbKUFh9vc/fpcYuIi/Jyit2pkRT0CKjULGFNp0UxO3Zd4Y2oSWBg4Fp6AlLT3UzrtpHu9TNqZWG3DkTYXmo6cx4gyC9ZOHwY+RTVOoazFVGEYBnaTALtJQECU4fJlZ/cGAKxGHldNrsZVk9fA+ZWrsfnjdjzy1vsY9+Y6rD64DWO6zvUabf7tIbw6/lL8Ye5VsK1egcapwzG6wjpwIzFIxzMrknhFC0OycXOP47jecqn0DiUKE4OSRGoUPShOHt/a0k+ebe75FsexbL8+J1I/sQwwqsICf1DOquQ03pieT6BKykz9lN25S9SOJMs9OUJSeH7sZgG3L6lPWTWn97WoFSFZuMsnwpeF3Zu+XPQEsPVwO069vg2TmjZi9cFtGOFqDz/eZbJh44QF2HXpcgxZdRUWTx6WstFmpPrJbhJg4BgEJDWgsRg43HnVhJgWE1H2Ej1J47EsKUIWDqECgEY+dzV69Aapn2JAQQ0RiV79XBLJzaMClD59jqxTE9qv6Q2EmJzIheONaeP4Smz9uCOrPlfZCtT6tmMUWJy44IESI4BMtxyAXtditvCLEpxeEW6/CDkHH0HtLj+aDrXh/Oa3MOWdzVhzaBuGurt6H7eUYePEy7H38qsxdMUVWDKpGlUlyZkpJ/K/ihfQhAKhEpMAgVOPsJwDBEIAwsUsQ/k4gynhmIKaGFBQQ/RFb5VARVHGnJ+9DocnCEMceXapWcATN82F0ycmrCg8rNSMf354CofbunMqF443ptn0ucrm3EW2U2rkceOTH8DpFePPj0XAznuvTPkoSm9rMRfIsgJ3IHe7NwDQ6vCh6cA5dGx6A7O3b8aKI9tR7nWGHz9nqwgbbQ5fvhiLkzDaTMb/KvR3iWXgAdQNteGhz0xLSrVlFNSClmYDF9NXrJigoCYGFNQQeufFD8/g+3/bA5ZlYpb0F2VVnv3Lz83Epy8ZkfBa+TJSLGa0nB8imoAoq47hPjHs15VtTnV60LT/DFwbXsX891/rZ7R5qrQa6xsW4fCS1Ri7TDXaLM3AaPNIazfue6kZZoNq/NoXnyjDFxDx409NG9BPqy8cy6DULKCsQJLKU4Xq1BBEAXKmywMZQAwxBYBeefaZLk/sP4ggX0aKxYyW80NEY+BZlPMGlFvVujfdPhHuQHaqFoeo7THaxKLxqtHmvlPwrd+Iy3e+jiuPvo9aRxtufe/vwHt/R8v/jMT6hkU4vmwNJiydh8vHVcKWotFmKjLwVJFkBb5gboJBPUNBDZFV9H7kkM71snlMMKLMAhZqjkasS6Yiz86mkWKiMcjHsVA2j7ki0XJ+8kUhHHOF6t5Icii5OIiAmN0P7LGVVoztMdr8+Pwt+M89J6CsW49Fu9/EFS07UN95Gt955zngnedw8NEx2DC5EaeXr8WURZfgsiSNNjORgQPJH3MNZuj4icgaWpgB6u16WvehL0nl1CSZs5EtI8VEYwAgq+MzUB+iEpJ1Pj/5INvrN5v4RQkun5pcnA1peCxCRpvv7j4Obv0rWLrnLSw6vhsGubdy8t6aHqPNlddg+mXTMD+B0WYmOTXJKKYsBh41pcklOBcalFMTAwpqcoeWZoB6uZ7WfYiHlmabWhspJhqDXBkzJmNoWWU3FcT85JJcrd9soygK3AEJLl8Q3kBukouBXqPND3YdhSmO0eaOEZOxedpiXFx5DWbPb8Ds0UP6FdNLRwaerGKKghoKaogsoLUZoB6ulw2Dw0RE1qkJybMzqYOihZFiojGQFRlH2roBABOqbGBZdsDrpUO8PiiKguMd7nCRv0yNMwdCy/nJBblev7kiKMmq/YA/e6aasRAlGbtPdWHH+z1Gm81bMPf0gSijzfdGTcXr05age/U1mD9nAmbU9hptpiIDT2V3x2YUBn1QQzk1hOZobQaoh+tlw+AwEV9rrMdNC8aG5dnpVqwFtDNSTDQG/qDSk9DJwC8qMBsGvl46xOuDL6gWw+N7cogyNc4cCC3nJxfkev3mCoFjMcRqwBCrAd6e3ZtsJxcDqtHm3DHlmDumj9Hmppex4iPVaPPyE/tw+Yl9CG74Pd4eMxNPz1gK/5q1uGxWHWbUlmFGbVlS+TEDG2cKOHXBjaNtbswcVZbV+y4EKKghNEdr1Y0erpcPJRHPs5rJgrUwUkw0BqIsQ+nxd+prWhnveukQrw+h9rUyzkwGLecn2wwGJZzZoNZrCZlHOn3BnOzeRBpt+r6wCO8d68TTb+/BsFdfwar9TX2MNn+Lpro5+NPMpcDatbh8xmjMGT0koQ9VNhVTxQgFNYTmaG3Sp4frFZvxoNZjEDKuDP0/metp2W+tjTOLjWJbv4ngWAalFgGlFgHegASnLwi3Xxz4iRpgEjgsmTgUSyZeBc8NS/FOywX8cUu00ebyj9/D8o/fg/fFX+ONcarRprBmFRrjGG1mqpgabFBQQ2iO1iZ9erhetowH8yWv1XoMjAIT/rnvG28ujCYjjTPNAgtfUJUBCxyLEjM3YPuFIHPOhGTnu6HGrqm8P1W0nofQ7o0oyXD51MrFuSrsZzHwuLKhGlc2qEabr/YYbda/tR5rDmzFmK5zWHNoG9ZEGG0+NvdKWFevjDLazNQ4c7BBicJEVtDapE8P18tGH/Ipr9V6DHhW9QiXZOTFaPK8049un2oAGgkDtT+/v/6SmO3nex5yxUDz/cX5o1KWw2s5drmYh5ByqtsnwhPIze5NX0JGmydffxsNTRuw6tA2jHRGG21umrAAOyOMNtucvqQUU6R+oqCGyCJam/Tp4Xpa9UEv8lqtxwBA3o0mY5Uw4Rjg7pWT+imT9DIPuSKR4egz75/MW4mDfMyDKMlh1/BcKqciCRlttr26BVPf3oTVh95Glfti7+MRRpvipZfhWKcPbQ5vXMUUBTUU1BBZRg8VgLW+XqZ90Ju8VusxyEdF4RITj5ue2AGHVy2KBzDhxGVAiVkUT2/zkCv6zk9DjR03PbUjbyUO9DAPvmBvYb9cuIbHItJo85J3N2Pl4f5GmxsmLcSHly0Hf+l8LBhXhdljyqIUUxTUUE4NkWX6qm6K4XqZ9kFv8lqtx0DrOUqmDy9+eAYuX7CnGF5PknB4aBnwnAyXN4hX9p0LK5b0Ng+5ou/8NJ925LXEgR7mwSSoLtcVVgO6e1zD/TlyDQ9RU2rC5y8bC1x2C051Xo//7jHanPf+67j643cxrPsCbt75Em7e+RJO/Vk12vz9ktUYu+wyLBpfhVJL+kabxQQFNQSRYwaDvDbXpGM0SfOgku8SB3qaB5ZlUGISUGISEBBluHxBdOfQliFEP6PNj07D98pGLIhptDkC6xsacXzZaky9cgE+N3ckSkyDN8ChoIYgcsxgktfmikijSYZRoCgIHz+Fpd6INprM5jwUkpoqchyMDAtfUIYoy+BZFiaBzXqJA72+Hgw8iwqbEeVWA9wBCU5vEL4c794APUabSyZCWTwBH5+/GQ/uPQFp3Xos+vBNXHFsJ+o7z0QZbf5x8mKMuPVGfP4LS3PeVz1AQQ1B5JhsycMHM2unD8MD6/bD4QlClNRv1SH7ghClFgFrpw8L/5yteSg0NVVoHPaeckCS1crMoYDQwLHgWBYzakuzVuJA768HhmFgM/KwGXkERBlOXxDdvtzn3jAMgwnVdkxYPhXKVVNw4NyteGDPJ+BeeQVL97yJRcd3o6H9EzQ0fQI0PQX8ag7whS8A110H1NbmtK/5RJ81vQmiiGFZBrctrofNyKHV6Yc3KEGWFXiDElqdftiMHG5bXK/bb/Z6hOdZrJ5aAwUI/0PE/xUAq6fWRNkYZGMeQiqeg+ecsBp5VNmNsBp5HDznwr0vNmP70Q7tblojWJZB4/hKeAIiPD0GkaGTIE9AgicgonF8ZdQ4aDl2hfR6MPAsKm1GjK6wYKjdCJPQf2cpFzAMgynDS/G1VTNw4+//HY4X/on/94fX8KNr7sT2ukugcBywcyfw/e8Do0YBCxcCv/sd0Nqal/7mElI/EUSe0FqiPpgJKWh2fdIJnyhHybpZBjDxHGaPGRJTQaPVPOhBxZMOoX7vO90FUVL67dTwHIPpI8uyOnZaXyuX5DP3pi8GjoUnKGEC4wX+/nfgr38Ftm1Tz2IBgGWBxYvVHZx/+RegUr/j2heSdMeAghpCbxRS7oWeaT7twDee3gmrkYeBY+DwqrVHBI5FqZmHX1Lg8Yt47IY5MRU0WsxDZB9ifYP3BqWEfcgXkf02Cix8gYicGoOaY5PtscvGtXKNoijwBFRpeL4K+8WUdJ85A/ztb8DzzwPvv9/7e44DrroK+PzngU9/GijVz5qMBUm6CaIAyJX8udiJVNCwLIMh1uikUiOUhAoaLeZBTyqeVIjsNwOmx908eTNQLddwIb8eGIaB1cjDauTDtgzd/vwV9gszYgTwve+p/44fB154Qd3B2b0b2LRJ/feNbwArV6oBztq1gM2W3z5nAAU1BUQhf4spNAbTWMe710IaAz0oaPTQh3TItN+FtE6yRawxGGI1YIjVAG9AgssXhDsgIe8HI2PHAj/8ofrvyBE1uHnuOeDgQeCll9R/ZjOwZo16RLVypfpzAUFBTYFQaIqKQmYwjXW8e20cX5myD1A+0YOCRg99SIdM+j2YXivxGGgMQqaakqyg2yfC6Qvmf/cGACZMAP7jP4D/9/+Ajz5SA5znnwdaWtTjqr/9Td2xufZadQdn+XLAoK+APBaUU1MADDZ/mnwymMY63r22Of3wBERYjRyq7KaCGQOtDUcLtQ/pkJm5afG/VuKR7hhky5YhY5sERQE+/FANbv76V+DUqd7HysrU5OIvfAFYuhTgc7snkuznN0m6dY4sK3i0qQXdfhE1JSaYBA4sy8AkcKgpMaLbL+HRphbIec66LwYG01jHu1cjz0KSZUiyAlFSYBTYghmDBeMq8bNPT0PDMDs8fhHnu/3w+EU0DLPn7ANWD31Ih1T7PZheK/HIZAxMAoehdiNGlVtQYTPCwOvko5hhgNmzgYcfBj75BHjnHeA73wFqaoCuLuBPf1J3bIYPB775TWDrVkDWwa5TBHT8pHP04IsyWBhMYx3vXn1Btfga35Nj4QvIPYmjhTEGC8ZV4tK6irzmeOihD+mQSr8H02slHlqMAcsyKDULKDUL8AUlOH1BuP06yL1ROwcsWKD++/WvVWn488+rUvH2duDRR9V/w4erBf6+8AVg3ryQi2zeoKBG5xSqoqIQGUxjHe9eRVmtUcKxgCSrP6eihNEDelDQ6KEP6ZBsvwfTayUeWo9ByFRTsuos9wZQ5d9Llqj/fvc74M031eOpf/4TOHsW+O1v1X9jxqj5NzfcAEyZkpeu6mTPi4hHpDIhFnpVVBQig2ms490rz7K9XkmM+nMkxTQGRPoMptdKPLI1BhzLoNQioLbcguFlZthNAtg8735EIQjA1VerR1FtbcDLLwPXXw9YreqR1UMPAf/3f3nrHgU1OiekTLjoCfbbkgwpE+qrbLpTVBQig2ms492rSWBh4FiIPd9ATYbet4hiGANZVtB82oGmI+1oPu0o6pyPbFIor5VszncuxiAy92ao3Rg+CtYNRqNa1+aZZ4Dz51XF1Gc/q+7W5Ak6ftI5IV+Ue19sRqvTH1OZoBdflEJnMI11onvlWBYcq+bV+IJy0YwByY+1oxBeK9me71yOAcsysJsE2E0CgpKMbr0U9ovEYlEDms9+Nq/dIEl3gVCoviiFyGAa63j3GlWnpgjGgOTH2UGvr5Vcznc+x6BvYb+MJd06hryfYlDIQQ1AlTtzyWAa62KoKJyIQjWaLBT0tk7yMd/5HoNQYT9JUVBuLc48JvJ+KkIKVVFRiAymsY53r8UyBiQ/zi56Wyf5mO98j0EouZigRGGCIIqcZKS3wSKXHw8maL4HN7RTQxBEURMpvTUyLHxBGaIsg2dZmASWDBuLjEI1FiW0gYIagiCKmpD0du8pByRZrZis9NThMXAsOJbFjNpSMmwsEgrVWJTQBjp+IgiiqGFZBo3jK+EJiPAEJABqxWQA8AQkeAIiGsdX9tt9CSloDp5zwmrkUWU3wmrkcfCcC/e+2IztRztyfStEEoSk1jYjh1anH96gBFlW4A1KaHX6dSE3J7IHBTUEQRQ1sqxg68cdsBo5WHqKl4XKe1gMHKxGDls/7ogqzEaGjYVNoRqLEplDx08EQRQ1ITVMld0Eo8DCF4jIqTGoOTZ91TCkmCp8CtVYlMgMCmoIgihqItUwDJieUvOJTTrJsLE4yLfUmsg9FNQQhEaQSkZ7tBjTdNQwmSpoaC0UH4nmlOZbP1BQQxAaQCoZ7dFqTNNRw2SioKG1UHwkmlMANN86oiAShT/55BPcfPPNGDt2LMxmM+rr6/GjH/0IgQBt/RL5h1Qy2qPlmKajhklXQUNrofhINKd3vLAHd7ywh+ZbRxREUHPo0CHIsozHHnsM+/fvx29+8xv84Q9/wL333pvvrhGDHFLJaE82xjQdNUyqz6G1UHwkmtNquwGd7gA63QFUlxhpvnVCQRw/rVixAitWrAj/XFdXh8OHD+PRRx/FL3/5y7jP8/v98Pv94Z+dTmdW+0kMPkgloz3ZGtN01DCpPIfWQvGRaE79ogLVDlqBP6jAHJFeRfOdPwoiqImFw+FAeXl5wr958MEH8cADD+SoR8RghFQy2pPNMU1HDZPsc2gtFB+J5lSU1WJHihL6f3RCOc13fiiI46e+tLS04He/+x1uvfXWhH93zz33wOFwhP+dOnUqRz0kBguRKplYkM9M6hTqmBZqv4n4JJpTnlU/Phmm9/+R0Hznh7wGNffffz8Yhkn4b+fOnVHPOXv2LFasWIHPfe5zuOWWWxJe32g0oqSkJOofQWhJSCVz0ROEokSfnYdUMvVVNvKZSYFMx1SWFTSfdqDpSDuaTztyltNAa6H4SDSnRp4Bw6hHTUYh+miK5jt/MErfmcohHR0d6OhInB0+ZswYmEwmAGpAs3TpUsyfPx9PPvkk2BjRcSKcTidKS0vhcDgowCE0I6SO6PZLKLMIMHKq83OXJwibkaOy7GmQ7pjmW05Na6H4SDSnoVMpSQbNd5ZJ9vM7r0FNKpw5cwZLly7F7Nmz8Ze//AUc178g1kBQUENki6gPU1mBwFKtikxJdUx7P3xEDLEYYOBYBCQZF3P8AUNrofhINKcAaL5zQFEFNWfPnsXixYsxatQo/PnPf44KaGpqapK+DgU1RDahqqLak+yYyrKCG5/4AAfPOVFTYupXLK/V6UfDMDueumleTuaE1kLxQRWF80uyn98FoX569dVXcfToURw9ehQjR46MeqwAYjJikEA+M9qT7JjqTU5Na6H4SDSnNN/6oSDUT1/5ylegKErMfwRBEMnIqYMkryWIoqcgdmoIgiASkakBZa6gYwoiBK2F7EBBDUEQBU8mBpS5It/KLEI/0FrIHgVx/EQQBJGIdA0ocwUZXRIhaC1kFwpqCIIoCtIxrcwFZHRJhKC1kH3o+IkgiKIhHdPKbKM3ZRaRP2gtZB8KagiCKCr0Jq8lo0siBK2F7ENBDUFoBKkZiFgUijKLyD60FrIPBTUEoQGkZiDiUQjKLCI30FrIPpQoTBAZQmoGIhF6V2YRuYPWQvahoIYgMoDUDEQy6FWZReQeWgvZhY6fCCIDSM1AJIselVlEfqC1kD0oqCGIDCA1A5EKelNmEfmD1kJ2oOMngsiASDVDLEjNQBAEkTtop4YgMoDUDMlDkndCL9BaLF4oqCGIDAipGe59sRmtTj/KLAKMHAu/JKPLEyQ1Qw8keSf0Aq3F4oZRFGXQyDKcTidKS0vhcDhQUkLfnAntiHqjlBUILL1RhghJ3rv9IoZYDDBwLAKSjIs9QR8pPohcQWuxcEn285t2aghCA0jNEJu+kvfQ8ZyJ5VBTwqLV6cejTS24tK5i0I8VkV1oLQ4OKKghCI0gNUN/SPJO6AVai4MDUj8RBJE1kpG8B0nyTuQAWouDA9qpIQgia0RK3o0sC19AhijL4FkWJgNbtJJ3UtfoDzKTHBxQUEMQRNYISd73ne6CKCkISDIUBWAYwMCx4DkG00eWFZXkndQ1+oTKLwwO6PiJIIiswbIMGsdXwu2X4AlIAIDQ7r8nIMHtl9A4vrJodjHI3FS/kJnk4ICCGoIgsoYsK9j6cQcsBg4Wg7rlHyq+rP6Ox9aPO4rC8JPMTfUPmUkWP3T8RBBE1ggpTqpLTDDyLHzBiJwagYVPlItGcULqmsKAyi8UNxTUEASRNSIVJwzDwGzgAPQmaRaT4SeZmxYOVH6heKGghiCIrDGYFCeD6V6LGVKuFTYU1BAEkTUGk+JkMN1rsULKtcKHEoUJgsgag0lxMpjutRgh5VpxQEENQRBZZTApTgbTvRYTpFwrHuj4iSCIrDOYFCeD6V6LBVKuFQ8U1BAEkRMGk+JkMN1rMUDKteKBjp8IgiCIQU2kci0WpFwrHCioIYgiQpYVNJ92oOlIO5pPOygHgCCSIKRcu+gJQlGiXzMh5Vp9lY2UawUAHT8RRJFAclSCSI+Qcu3eF5vR6vSjzCLAyKku8l2eICnXCgjaqSGIIoDkqASRGaRcKw5op4YgCpy+ctSQesPEcqgpYdHq9OPRphZcWldB3zQJIgGkXCt8KKghiAKH5KgEoR2kXCts6PiJIAqcZOSoQZKjEgQxCKCdGoIocIrZSJHMBQsXmjsiH1BQQxAFTrEaKZKaq3ChuSPyBR0/EUSBU4xGiqTmKlxo7oh8QkENQRQBxSRHJXPBwoXmjsg3dPxEEEVCschRSc1VuNDcEfmGghqCKCKKQY5K5oKFC80dkW/o+IkgCF1B5oKFC80dkW8oqCEIQleQuWDhQnNH5BsKagiC0BXFqOYaLNDcEfmGUfqG00WM0+lEaWkpHA4HSkromwJB6JmoWieyAoGlWieFAs0doTXJfn5TUEMQhG6hqrSFC80doSXJfn6T+okgCN1SDGquwQrNHZEPKKeGIAiCIIiigIIagiAIgiCKgoIJaq655hqMGjUKJpMJw4YNww033ICzZ8/mu1sEQRAEQeiEgglqli5dihdeeAGHDx/GP/7xD7S0tOCzn/1svrtFEARBEIROKFj108svv4xrr70Wfr8fgiAk9RxSPxEEQRBE4VHU6qfOzk4888wzWLBgQcKAxu/3w+/3h392Op256B5BEARBEHmgYI6fAOCHP/whrFYrKioqcPLkSbz00ksJ//7BBx9EaWlp+F9tbW2OekoQBEEQRK7Ja1Bz//33g2GYhP927twZ/vu77roLu3fvxquvvgqO4/DlL3/5/2/v3oOirPc/gL8XgUVum3IRtpBFzMBEE0njUuYo3pCki3YxL1N6hkYNJnLMjgk1FfZHTdogBRFmN6zARsdKUZAupjQIwwbMcldOQSRlok7qgff5w9nnx+OieX4qHJ/n85rZkf1+v7v7/b7dWT7z7Pfhcbi+SF/r1q3Dn3/+qdza2toGYllCCCGEGASDuqfm+PHjOH78+GXHWCwWuLm5ObT/61//QlBQEA4ePIjo6Ogrej3ZUyOEEELceG6IPTW+vr7w9f3/XQfEXov13TNzpY+RvTVCCCHEjcP+e/vvjsPcEBuFy8vLUV5ejri4OAwbNgzNzc3YsGEDQkNDr/goDQB0d3cDgOytEUIIIW5A3d3dMJkuffmNG6KoGTp0KIqKipCeno7Tp08jMDAQs2fPRkFBAYxG4xU/j9lsRltbG7y8vGAwXLsLq508eRJBQUFoa2vT9ddakoNkYCc5SAaAZGAnOVx9BiTR3d0Ns9l82XE3RFETERGBkpKSq34eJycn3HLLLddgRv3z9vbW7Ru2L8lBMrCTHCQDQDKwkxyuLoPLHaGxu6FO6RZCCCGEuBQpaoQQQgihCVLUXANGoxHp6en/1f4eLZIcJAM7yUEyACQDO8lh4DK4Ya/9JIQQQgjRlxypEUIIIYQmSFEjhBBCCE2QokYIIYQQmiBFjRBCCCE0QYqaa2DLli0ICQmBm5sbJk2ahG+//Xawp3RdffPNN0hMTITZbIbBYMAXX3yh6ieJjIwMmM1mDB06FPfeey9qamoGZ7LXQWZmJu688054eXnB398fSUlJsNlsqjFazwAAsrOzMX78eOWPaUVHR+Orr75S+vWQwcUyMzNhMBiQmpqqtGk9h4yMDBgMBtUtICBA6df6+vv6+eef8fjjj8PHxwfu7u644447UFFRofRrPQuLxeLwXjAYDFi5ciWAAVo/xVUpKCigi4sLc3NzWVtby5SUFHp4ePDo0aODPbXr5ssvv+Q///lPFhYWEgB37Nih6t+4cSO9vLxYWFhIq9XKhx9+mIGBgTx58uTgTPgamzVrFvPz8/nTTz+xqqqKCQkJHDlyJE+dOqWM0XoGJLlz507u3r2bNpuNNpuNzz//PF1cXPjTTz+R1EcGfZWXl9NisXD8+PFMSUlR2rWeQ3p6Om+//Xa2t7crt87OTqVf6+u3+/333xkcHMxly5bx8OHDbGlp4b59+9jY2KiM0XoWnZ2dqvdBcXExAbC0tJTkwKxfipqrNHnyZCYnJ6vawsLC+Nxzzw3SjAbWxUVNb28vAwICuHHjRqXtr7/+oslk4ttvvz0IM7z+Ojs7CYBlZWUk9ZmB3bBhw/juu+/qLoPu7m7eeuutLC4u5tSpU5WiRg85pKenc8KECf326WH9dmvXrmVcXNwl+/WUhV1KSgpDQ0PZ29s7YOuXr5+uwrlz51BRUYGZM2eq2mfOnImDBw8O0qwGV0tLCzo6OlSZGI1GTJ06VbOZ/PnnnwCA4cOHA9BnBj09PSgoKMDp06cRHR2tuwxWrlyJhIQEzJgxQ9WulxwaGhpgNpsREhKCRx55BM3NzQD0s34A2LlzJ6KiorBgwQL4+/tj4sSJyM3NVfr1lAVw4ffjhx9+iCeeeAIGg2HA1i9FzVU4fvw4enp6MGLECFX7iBEj0NHRMUizGlz2deslE5J45plnEBcXh3HjxgHQVwZWqxWenp4wGo1ITk7Gjh07MHbsWF1lUFBQgCNHjiAzM9OhTw85TJkyBdu2bcOePXuQm5uLjo4OxMTEoKurSxfrt2tubkZ2djZuvfVW7NmzB8nJyXj66aexbds2APp4L/T1xRdf4MSJE1i2bBmAgVv/DXGV7v91BoNBdZ+kQ5ve6CWTVatWobq6Gt99951Dnx4yuO2221BVVYUTJ06gsLAQS5cuRVlZmdKv9Qza2tqQkpKCvXv3ws3N7ZLjtJzDnDlzlJ8jIiIQHR2N0NBQvP/++7jrrrsAaHv9dr29vYiKisKrr74KAJg4cSJqamqQnZ2NJUuWKOP0kAUA5OXlYc6cOTCbzar2671+OVJzFXx9fTFkyBCHKrOzs9OhGtUL+1kPeshk9erV2LlzJ0pLS3HLLbco7XrKwNXVFaNHj0ZUVBQyMzMxYcIEbNq0STcZVFRUoLOzE5MmTYKzszOcnZ1RVlaGzZs3w9nZWVmr1nPoy8PDAxEREWhoaNDN+wAAAgMDMXbsWFVbeHg4jh07BkBfnwtHjx7Fvn37sHz5cqVtoNYvRc1VcHV1xaRJk1BcXKxqLy4uRkxMzCDNanCFhIQgICBAlcm5c+dQVlammUxIYtWqVSgqKkJJSQlCQkJU/XrI4FJI4uzZs7rJYPr06bBaraiqqlJuUVFRWLRoEaqqqjBq1Chd5NDX2bNnUVdXh8DAQN28DwAgNjbW4U871NfXIzg4GIC+Phfy8/Ph7++PhIQEpW3A1n/NthzrlP2U7ry8PNbW1jI1NZUeHh5sbW0d7KldN93d3aysrGRlZSUB8I033mBlZaVyGvvGjRtpMplYVFREq9XKRx99VFOnLT711FM0mUw8cOCA6vTFM2fOKGO0ngFJrlu3jt988w1bWlpYXV3N559/nk5OTty7dy9JfWTQn75nP5HazyEtLY0HDhxgc3MzDx06xHnz5tHLy0v5DNT6+u3Ky8vp7OzMV155hQ0NDfzoo4/o7u7ODz/8UBmjhyx6eno4cuRIrl271qFvINYvRc01kJWVxeDgYLq6ujIyMlI5tVerSktLCcDhtnTpUpIXTl1MT09nQEAAjUYj77nnHlqt1sGd9DXU39oBMD8/Xxmj9QxI8oknnlDe935+fpw+fbpS0JD6yKA/Fxc1Ws/B/rdGXFxcaDab+cADD7Cmpkbp1/r6+9q1axfHjRtHo9HIsLAw5uTkqPr1kMWePXsIgDabzaFvINZvIMlrd9xHCCGEEGJwyJ4aIYQQQmiCFDVCCCGE0AQpaoQQQgihCVLUCCGEEEITpKgRQgghhCZIUSOEEEIITZCiRgghhBCaIEWNEEIIITRBihohhLhGMjIycMcdd1x2TGtrKwwGA6qqqgZkTkLoiRQ1QmgUScyYMQOzZs1y6NuyZQtMJpNyBeGBVFhYiClTpsBkMsHLywu333470tLSBnwe18Ozzz6L/fv3K/eXLVuGpKQk1ZigoCC0t7dj3LhxAzw7IbRPihohNMpgMCA/Px+HDx/GO++8o7S3tLRg7dq12LRpE0aOHHlNX/P8+fOX7d+3bx8eeeQRPPTQQygvL0dFRQVeeeUVnDt37rq+7kDx9PSEj4/PZccMGTIEAQEBcHZ2HqBZCaEj1/RKUkKI/zlbt26lp6cnm5ub2dvby2nTpnH+/PmsqanhnDlz6OHhQX9/fz7++OP87bfflMd99dVXjI2Npclk4vDhw5mQkMDGxkalv6WlhQC4fft2Tp06lUajke+99x5bW1s5b9483nTTTXR3d+fYsWO5e/dukmRKSgrvvffev53zzp07GRkZSaPRyJCQEGZkZPD8+fNKPwBmZ2fzvvvuo7u7Ozds2ECS3LJlC0eNGkUXFxeOGTOG27ZtUz0vAG7ZsoWzZ8+mm5sbLRYLP/30U9WY6upqTps2jW5ubhw+fDhXrFjB7u5upb+0tJR33nkn3d3daTKZGBMTo1yROj09nRMmTFB+xkUXPS0tLVVyq6ysZE9PD2+++WZmZ2er5lBRUUEAbGpqIkmeOHGCK1asoJ+fH728vDht2jRWVVX9bY5C6I0UNULowPz58zl16lRu3ryZfn5+bG1tpa+vL9etW8e6ujoeOXKE8fHxnDZtmvKYzz//nIWFhayvr2dlZSUTExMZERHBnp4ekv9X1FgsFhYWFrK5uZk///wzExISGB8fz+rqajY1NXHXrl3KleszMzPp5+d32Svzfv311/T29ubWrVvZ1NTEvXv30mKxMCMjQxkDgP7+/szLy2NTUxNbW1tZVFREFxcXZmVl0Waz8fXXX+eQIUNYUlKiepyPjw9zc3Nps9m4fv16DhkyhLW1tSTJ06dPK1eatlqt3L9/P0NCQpQr0J8/f54mk4nPPvssGxsbWVtby61bt/Lo0aMk1UVNd3c3Fy5cyNmzZ7O9vZ3t7e08e/asqqghybS0NMbFxakySEtLY3R0NMkLVzaOjY1lYmIif/zxR9bX1zMtLY0+Pj7s6ur6b98KQmiaFDVC6MCvv/5KPz8/Ojk5saioiC+88AJnzpypGtPW1kYAtNls/T5HZ2cnASgFif2X85tvvqkaFxERoSpA+jp16hTnzp1LAAwODubDDz/MvLw8/vXXX8qYu+++m6+++qrqcR988AEDAwOV+wCYmpqqGhMTE8MVK1ao2hYsWMC5c+eqHpecnKwaM2XKFD711FMkyZycHA4bNoynTp1S+nfv3k0nJyd2dHSwq6uLAHjgwIF+19e3qCHJpUuXcv78+aoxFxc1R44cocFgUI722I/eZGVlkST3799Pb29vVUYkGRoaynfeeaffeQihV7KnRggd8Pf3xz/+8Q+Eh4fj/vvvR0VFBUpLS+Hp6ancwsLCAABNTU3Kv4899hhGjRoFb29vhISEAIDD5uKoqCjV/aeffhovv/wyYmNjkZ6ejurqaqXPw8MDu3fvRmNjI9avXw9PT0+kpaVh8uTJOHPmDACgoqICL730kmpuK1asQHt7uzKmv9etq6tDbGysqi02NhZ1dXWqtujoaIf79jF1dXWYMGECPDw8VM/R29sLm82G4cOHY9myZZg1axYSExOxadMmtLe3Xy76vzVx4kSEhYXhk08+AQCUlZWhs7MTCxcuVPI4deoUfHx8VJm0tLQo/1dCiAukqBFCJ5ydnZXNqb29vUhMTERVVZXq1tDQgHvuuQcAkJiYiK6uLuTm5uLw4cM4fPgwADhs6u1bAADA8uXL0dzcjMWLF8NqtSIqKgpvvfWWakxoaCiWL1+Od999F0eOHEFtbS22b9+uzO3FF19UzctqtaKhoQFubm6XfF3gwubovkg6tPXHPuZy4+3t+fn5+OGHHxATE4Pt27djzJgxOHTo0N++xuUsWrQIH3/8MQDg448/xqxZs+Dr6wvgQh6BgYEO/1c2mw1r1qy5qtcVQmukqBFChyIjI1FTUwOLxYLRo0erbh4eHujq6kJdXR3Wr1+P6dOnIzw8HH/88ccVP39QUBCSk5NRVFSEtLQ05ObmXnKsxWKBu7s7Tp8+rczNZrM5zGv06NFwcrr0R1Z4eDi+++47VdvBgwcRHh6uaru4ADl06JBylGrs2LGoqqpS5gIA33//PZycnDBmzBilbeLEiVi3bh0OHjyIcePGKQXJxVxdXdHT03PJOds99thjsFqtqKiowOeff45FixYpfZGRkejo6ICzs7NDHvbCRwhxgZxTKIQOrVy5Erm5uXj00UexZs0a+Pr6orGxEQUFBcjNzcWwYcPg4+ODnJwcBAYG4tixY3juueeu6LlTU1MxZ84cjBkzBn/88QdKSkqUwiIjIwNnzpzB3LlzERwcjBMnTmDz5s04f/484uPjAQAbNmzAvHnzEBQUhAULFsDJyQnV1dWwWq14+eWXL/m6a9aswcKFCxEZGYnp06dj165dKCoqwr59+1TjPvvsM0RFRSEuLg4fffQRysvLkZeXB+DCEZP09HQsXboUGRkZ+O2337B69WosXrwYI0aMQEtLC3JycnDffffBbDbDZrOhvr4eS5Ys6XdOFosFe/bsgc1mg4+PD0wmU7/jQkJCEBMTgyeffBL//ve/MX/+fKVvxowZiI6ORlJSEl577TXcdttt+OWXX/Dll18iKSnJ4Ws4IXRtsDf1CCEGxsWbWOvr63n//ffzpptu4tChQxkWFsbU1FT29vaSJIuLixkeHk6j0cjx48fzwIEDBMAdO3aQdNzwardq1SqGhobSaDTSz8+Pixcv5vHjx0mSJSUlfPDBBxkUFERXV1eOGDGCs2fP5rfffqt6jq+//poxMTEcOnQovb29OXnyZObk5Cj9fefR15Wc0p2VlcX4+HgajUYGBwfzk08+UY253CndHR0dTEpKYmBgIF1dXRkcHMwNGzYoZ4RdnHFnZyfj4+Pp6enZ7yndfWVlZREAlyxZ4rCukydPcvXq1TSbzXRxcWFQUBAXLVrEY8eOOYwVQs8MJDmINZUQQgwYg8GAHTt2OPyVXyGENsieGiGEEEJoghQ1QgghhNAE2SgshNAN+bZdCG2TIzVCCCGE0AQpaoQQQgihCVLUCCGEEEITpKgRQgghhCZIUSOEEEIITZCiRgghhBCaIEWNEEIIITRBihohhBBCaMJ/ANx9Ts91trcjAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"ax = sns.regplot(data = data,\n",
" x = 'YearsSeropositive',\n",
" y = 'exec_domain_z')\n",
"\n",
"# Pick \"years seropositive\" from 0 to 70\n",
"x = np.arange(0, 70)\n",
"\n",
"# Use the coefficients from above in a linear equation\n",
"y = res.loc[1, 'coef']*x + res.loc[0, 'coef']\n",
"\n",
"ax.plot(x, y, color = 'r')"
]
},
{
"cell_type": "markdown",
"id": "7b9d1f9b-16b9-4f95-ae29-00d964a2eb3c",
"metadata": {},
"source": [
"## Residuals"
]
},
{
"cell_type": "markdown",
"id": "f9909e11-b673-4be1-9787-e4f815f04ab7",
"metadata": {},
"source": [
"_Residuals_ are the difference between the observed value and the predicted value.\n",
"In the case of a simple linear regression, this is the y-distance between each point and the best-fit line.\n",
"Examining these is an import step in assessing the fit for any biases.\n",
"You can think of the residual as what is \"left over\" after the regression.\n",
"\n",
"We could calculate these ourselves from the regression coefficients, but, `pingouin` conviently provides them for us.\n",
"The result `DataFrame` from `pg.linear_regression` has a special attribute `.residuals_` which stores the difference between the prediction and reality for each point in the dataset."
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "aff2050d-1d24-4b23-834a-dd8e9add1aa0",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ 0.34672285 1.15826787 -0.29430717 -1.06544462 1.08198035]\n"
]
}
],
"source": [
"print(res.residuals_[:5])"
]
},
{
"cell_type": "markdown",
"id": "c2662e02-ff9b-4398-ace9-d4f05d29e098",
"metadata": {},
"source": [
"In order to test the **Homoscedasticity** we want to ensure that these residuals are _not correlated with the depenendant variable_.\n",
"\n",
"In our case, this means that the model is equally good predicting the EDZ of people recently infected with HIV and those who have been living with HIV for a long time.\n",
"\n",
"To do this, we plot the residuals vs each independent variable."
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "2eec2b7c-2bae-4b79-a740-f534751b66e9",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGzCAYAAAASZnxRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWYklEQVR4nO3deXwV5b0/8E+2k5UcQkIglASQgOyb1P7YSxErKgLXq9Vai616X6hguXC9Csriil6rr1YrXMWt3tuit7KIS1VcQCjXqhguYSmyGloCgTTJIQlJWJ7fH/YcCZmZc86ceWaemfm8Xy9eylnmDLN+53m+z/dJEkIIEBERETkg2ekVICIiIv9iIEJERESOYSBCREREjmEgQkRERI5hIEJERESOYSBCREREjmEgQkRERI5hIEJERESOYSBCREREjmEgQkRERI5JlbnwZcuWYdmyZTh48CAAoH///li4cCEmTZoU0/fPnj2Lw4cPo127dkhKSpK4pkRERGQVIQROnDiBLl26IDnZuM0jSeZcM2+++SZSUlJQWloKAPjtb3+Lxx9/HGVlZejfv3/U7//1r39FcXGxrNUjIiIiiQ4dOoSuXbsafkZqIKKlQ4cOePzxx3HzzTdH/WxdXR3at2+PQ4cOITc314a1IyIiokSFQiEUFxejtrYWwWDQ8LNSu2bOdebMGfzhD39AQ0MDRowYofmZ5uZmNDc3R/5+4sQJAEBubi4DESIiIpeJJa1CerJqeXk5cnJykJ6ejhkzZmD16tXo16+f5meXLFmCYDAY+cNuGSIiIm+T3jXT0tKCiooK1NbWYuXKlXj++eexYcMGzWDk/BaRcNNOXV0dW0SIiIhcIhQKIRgMxnT/tj1H5JJLLkHPnj3x7LPPRv1sPP8QIiIiUkM892/b64gIIVq1ehAREZF/SU1WnT9/PiZNmoTi4mKcOHECr776KtavX493331X5s8SERGRS0gNRI4ePYobb7wRlZWVCAaDGDRoEN59911MnDhR5s8SERGRS0gNRF544QWZiyciIiKX41wzRERE5BgGIkREROQYBiJERETkGNtKvBORuuoaW3C8vgWhplPIzUxDQXYAwayA06tFRD7AQITI5w7XnsTdK7dh457jkdfG9irAo1cPQpf2mQ6uGRH5AbtmiHysrrGlTRACAJ/sOY57Vm5DXWOLQ2tGRH7BQITIx47Xt7QJQsI+2XMcx+sZiBCRXAxEiHws1HTK8P0TUd4nIkoUAxEiH8vNSDN8v12U94mIEsVAhMjHCnICGNurQPO9sb0KUJDDkTNEJBcDESIfC2YF8OjVg9oEI2N7FeCxqwdxCC8RScfhu0Q+16V9Jp6+fiiO17fgRNMptMtIQ0EO64gQkT0YiBARglkMPIjIGeyaISIiIscwECEiIiLHMBAhIiIixzAQISIiIscwECEiIiLHMBAhIiIixzAQISIiIscwECEiIiLHMBAhIiIixzAQISIiIscwECEiIiLHMBAhIiIixzAQISIiIscwECEiIiLHMBAhIiIixzAQISIiIscwECEiIiLHMBAhIiIixzAQISIiIscwECEiIiLHMBAhIiIixzAQISIiIscwECEiIiLHMBAhIiIixzAQISIiIscwECEiIiLHMBAhIiIixzAQISIiIscwECEiIiLHMBAhIiIixzAQISIiIscwECEiIiLHMBAhIiIixzAQISIiIscwECEiIiLHMBAhIiIixzAQISIiIscwECEiIiLHMBAhIiIix0gNRJYsWYLvfve7aNeuHQoLCzF16lTs3r1b5k8SERGRi0gNRDZs2IA77rgDn376KdatW4fTp0/j0ksvRUNDg8yfJSIiIpdIEkIIu37s2LFjKCwsxIYNGzB27Nionw+FQggGg6irq0Nubq4Na2i/usYWHK9vQajpFHIz01CQHUAwK+D0ahEREZkWz/071aZ1AgDU1dUBADp06KD5fnNzM5qbmyN/D4VCtqyXUw7XnsTdK7dh457jkdfG9irAo1cPQpf2mQ6uGRERkT1sS1YVQmDOnDkYPXo0BgwYoPmZJUuWIBgMRv4UFxfbtXq2q2tsaROEAMAne47jnpXbUNfY4tCaERER2ce2QGTmzJnYtm0bVqxYofuZefPmoa6uLvLn0KFDdq2e7Y7Xt7QJQsI+2XMcx+sZiBARkffZ0jUza9YsrF27Fp988gm6du2q+7n09HSkp6fbsUqOCzWdMnz/RJT3iYiIvEBqICKEwKxZs7B69WqsX78ePXr0kPlzrpKbkWb4frso7xMREXmB1EDkjjvuwO9//3u88cYbaNeuHY4cOQIACAaDyMz0dzJmQU4AY3sV4BON7pmxvQpQkMORM2QfGaO3OCKMiGIhdfhuUlKS5usvvfQSbrrppqjf9/rw3cO1J3HPym2tgpGxvQrw2NWDUMRRM2QTGaO3OCKMyN/iuX/bWkckXl4PRIBvnxpPNJ1Cu4w0FOTwqZHsU9fYgpkryjQTp8f2KsDT1w+N+3iUsUwichdl64hQW8EsBh7knFhGb8V7fMpYJhF5Fye9I/IxGaO3OCKMiOLBQITIx2SM3uKIMCKKBwMRIh8Lj97SYnb0loxlEpF3MRAh8rFgVgCPXj2oTeAQHr1lJpdDxjKJyLs4aobIJ4zqesgYvcURYUT+xVEzRNRKtLoeMkZvcUQYEcWCXTNEHueXmZ7rGluwr6oeZRU12Hes3jP/LiKvY4uIz7Dstv/4oa4HK7kSuRcDER/hxdqfnKrrYVfQG63Fh5VcidTGQMQneLH2LyfqetgZ9PqhxYfIy5gj4hOxXKzJm+yu62F3TgoruRK5GwMRn+DF2r/sruthd9DLSq5E7sauGZ/gxdrfurTPxNPXD7WlrofdQW+4xecTndl+WcmVSG1sEfEJlt2mYFYAPQtzMKQkDz0Lc6TlTdgd9LKSK5G7sUXEJ4JZATw0dQDmry7Hpr3VkddHl+bjoakDeLEmyzjRQmFniw8RWYsl3n2irrEFc//wf+hTlIuhxe3RfPos0lOTUXaoFrsrQ/jlNYN50SbLHK49iXtWbmsVjIRbKIo4VJzI81jindo4Xt+CD3ZV4YNdVbrvMxAhq7CFgohixUDEJzhqhuzGuWaIKBYMRHyCo2bchaX4icgvGIj4BIc4uodqpfgZFBGRTExW9REmEKqvrrEFM1eUaRYEG9urwPZS/KoFRUTkDkxWJU1MIFSfSvOmJDo/EVtSiCgWDER8hgmEalMpqTiRoIgtKUQUK1ZWJVKISknFZoOiRCe9q2tswb6qepRV1GDfsXrLJ8kjIrWwRYRIISolFZsNirzUksLuJSL52CJCpBCV5k0xOz+RUy0pVjtcexIzV5RhwpMbMG3pZkx4YgNmrSjD4dqTtq4HkdexRYTIIXpP24kkFVv5BB8OivRGWukt14mWFKslmqhLRLFjIEKe44bm9GhdEGaSimV0a5gJisx2L3klUZeI4sOuGfIUNzSny+iCkNmtEcwKoGdhDoaU5KFnYU7UG7DZ7iUvJOoSUfzYIkKe4ZbmdBlP26o9wdvZkiKDSkERkdexRYQ8I5absQpkPG2r+ARvV0uKDGYTdYkofmwRISWZyfNQ8WasRcbTtlee4FWp/ms2UZeI4sdAxGdkJHIeDTWhpqEFoabTyM1MRV5WAJ1yM0wvz2zSpVtuxjK6IApyApjYtxAXFuViaHF7NJ8+i4y0FHxZUYPdlSFXPcGrUv1XlaCIyOs46Z1FvDBSw4yK6gbMW12OP+2tjrw2ujQfj0wbiJL87LiXl8ikb3WNLZi1okz3Bq9KjgggZwJCq/eFitxwnhFRfPdvBiIWUK0apBYZs7oeDTVhzv9sbXXjCxtdmo8nrh0Sd8vIvqp6THhyg+77H84Zh56FObrvu2mG4fBN1YpaIQCUmrVXBjecZ0T0Dc6+ayM/j9SoaWjRDEIAYNPeatQ0tMQdiCSa5+Gm5nQra4Xce0VfpUbNWM0t5xkRxY+BSIJUGzapR85IjdMJva/FijwPVXIMrGZ0M55eY1wnRZVEXbPccp55DbvCyA4MRBLk75EaxodPtPe1qFRLQjVGN+NoVEnUNcst55mXsCuM7MI6Igly20gNLWZv8HnZAYwuzdd8b3RpPvKy41+mSrUkVGN0My47VIsxLqp7UdfYgn1V9SirqMG+Y/VRK7+65TzzCtUmICRvY4tIgtzyBC+jLkKn3Aw8Mm0g5q8uxyaNkRpmh/CqmOehQhO10c34xU0H8M6dY7Dwje3K170w86TtlvPMK9gVRnbiqBkL+GGkhpFWdUQyUpGXnVgdEdWo0kQdy/BkAEoFcOdLZPSWm84ztyurqMG0pZt1319z+0gMKcmzcY3IbThqxmYqPsHrkZHI2Sk3wxOBh96wWFVGa8TaqqXicReWyJO2m84zt2NXGNmJgYhFvDpSwy/cMizW7TfjRJNOeZ7Zg11hZCcmq5LvGSXm/VXBYbHxTianEj5puwOTxslObBEh3/PzsFi78UnbPRJpfVMhuZvcg4EI+V4sw2L1kit544wPZ7V1Fyur/7L+COlhIEKOUeWpyai74NXPKvD6jJG4b03bIcoPTR3AG6cJbs9zIX0sxU9mMBBxmCo3Y7up9NRk1F0w99IL8dBbOzGkJA8/G9UDzafPIj01GWWHavHgWzvxy2sGG+4vGfu31XDpzFTkZblvuDSTTr2J9UfIDAYiDlLpZiyLjCGxVt/cjboLhpW0x7xV5fjgL1Wa3zW6sMrYvxXVDZi3urzVZIPhAnIl+dmmlqkaGcGbXwN+u0UbFdXQfIr7gtpgIOIQPzRh6t2IH5gyAFu+rtH8TrSnJlnBm153wf7jDYbf0xs1k+j+1bpYN58+2yYIAb6Z6Xj+6nI8ce0Q17WMnE/G/lUx4PfqzdiomzMrkILczECbgnZO7ws/U+U4ZCBiA62dXd3g7SZMoxvxgje24+eje+A3H+3V/K6sm3s0Wt0FuRlR5kDJTLN8/+rdOO+/qj/KKmo1v7NpbzVqGlpcE4jYVTxOxYBfxcDIKkbdnAuu7IcFa7Zj41519oWfqXQcMhCRTG9nL7qqP7ICKWhsOaP5PbfPJmrUV7xxz3HcNLK77nf1hsQ60f9sdGGd2LcQgZRkzSc8s/vX6Ma5cO0OwwAu1HRamSccIzJayvSolrOgYmBkpVi6ObV44eHLTVQ7DqUWNPvkk08wefJkdOnSBUlJSVizZo3Mn1OO0c5e/I+bih6316eI1lesx2hIrBNTwRsVdlp8VX/MW11u6f6NFsANLW6vu8zczFTMXFGGCU9uwLSlmzHhiQ2YtaIMh2uNi7LZKZaWMj1m9q8Tx4yRWAIjtwt3c344ZxzW3D4SH84Zh6evH6oblIe5/eHLTVQ7DqUGIg0NDRg8eDB+85vfyPwZZUW7qYy8IF/zPS/Up4hWQbNrXmbcVRudqsqpd2FtOnXW8v1rNoAbU5qPsq9rlZ+2PZFAy8z+Va2Sq2qBkSxa1X9V2xd+ptpxKLVrZtKkSZg0aVLMn29ubkZzc3Pk76FQSMZq2Sbazk5PS27T7O+Vwk7RKmh2zs2Iu5ZEQU4AE/sW4sKiXAwtbo/m02eRkZaCLytqsLsyJDV408ofiZbIamb/xhLAjS7Nb1PT5IGpA3DFU5s0v6NSs7eMljIjqlVy9fPNWLV94WeqHYdK5YgsWbIE999/v9OrYZloO7t9ZsCzhZ1kzBQbzApgwZX9MG91eas8ifDwVbu3W7T9m5OeikkDizB9ZPdI/ZGqE82G34klgHvi2iHf1hHJSEVedgBH6k4aNn2faFJj2GSsLWVWBeeqVXL1881YtX3hZ6odh0lCCGHLDyUlYfXq1Zg6daruZ7RaRIqLi1FXV4fc3Fwb1tJadY0tmLWiTHdnuz0xLRbhm58VgVZdY0ubxNAwJ7ZntP07aWCRZnJetHU9XHtS92JdpJPNvq+qHhOe3KC7ru/NHoOH3t7leIZ8LOcEAMvnN7HyOEyUmf3rJSrtCz+TfRyGQiEEg8GY7t9KBSLni+cfoiq/X3SsFO1m++GccehZmGPjGunv3wemDMDlT23UbaWItq7xXqxlBUXnrotVLSkyzgmVhiJGU1l7Euu/OobCdumtWsq+37sjrwlkK5lBYTz3b6W6ZryI82pYR7UEK0B//x6sbojaVWIk3hLoRs3e4aBIixMF5Kw+J1QbimikrrEF/66xroB/WklJHapMtcBAxAaq7OxEuCG/wKlEP639mxNl+JuMdbU6KJJRHfbc3CAzx4/biwOqVtckESpcE8gbpAYi9fX12Lv326TCAwcOYOvWrejQoQNKSkpk/jRZSJVmb9kJVlZeWJ1KBrMyKErkpmlnqXY3FQdUsVXPDFWuCeQNUuuIfPHFFxg6dCiGDv0mAW3OnDkYOnQoFi5cKPNnyULRnortrE9hVFws0az7w7UnLS0GJnNd4xUOirTIKCAn45jxSnFAVVv14qHSNYG8QWqLyPe//33YlAtLkqjWlCwj50ZWjoEq+UFmh02avWnKOGaiFUK7bVxPzdL3qg2JldlSZldXiWrXBHI/5oiQIRWn9bY650bmhVWV/CAzQZHZm6aM7gevFAeUVUvDzq4Sr3QvkToYiFjELYlb8a6nH6b19suF1cqROHaX4vdScUC3jxryQvcSqYWBiAXckrhlZj39MK03L6z67GxJMRLLMlVpfYqFletqd1eJalU5yf2kJqv6gVsSt8yup1HS5bCS9m2CkHOX65aZRM0mc8biaKgJf6kM4bMDf8dfjoRwNNRkellO0ZrALNrnrU7UVSn5VzV2t+hxX5DV2CKSILckbiWynnpPxdEmfXNLl4asfvuK6gbMW12OP503Qd0j0waiJD874fVWWSLdD3rdh6ok/6rGiRY97guyEgORBLklvyDR9dRqSs7NsL9olyxWX1iPhpraBCEAsGlvNeavLscT1w5Bp9wMK1ZdWWa6H6J1H7qp+8UuKtWsIffkC6qEgUiCYnkaUeHAlPHU5LW+YisvrDUNLW2CkLBNe6tR09Di+UDEyNFQ07czCGemIi8rgIzUZNeUalcJZ7VVh1vyBVXDQCRB0W7GGWnJSowqkRE08AKoL9R0OqH3VWJ1IK3XZfXQ1IHYVRnS/I5K3ZwqYleJ89w055FqGIgkyOhm/Mi0gVi0docSB6asoIEXQG25GcanVrT3VWH1E55Rl9V9a8rx2NWDcPNvv9D8rirdnKpiV4mz3JIvqCJ3XA0Vp3czrm5owQe7qjS/I/PAtDvZjxfAtvKyAxhdmo9NGt0zo0vzkZet1vbSOmYAWP6EF63L6u5JfXS/66acI/Ift+QLqoiBiEW0bsZOjCphsp8aOuVm4JFpAzF/dXmrYCQ8akal/BC9Y+aBKQOw5esaze+YDaSjdUk1NGtPXOfGnCPyF9YjMo+BiER2H5jso1RLSX42nrh2yLdJmRmpyMsOKBWEGB0zC97Yjp+P7qE5hwtgLpCO1iUVzExr05I0ujQfD04dwGPXASok2ruF15L37cRARCK7D0z2UaqnU26GqcBDa1SJjAAm2mRyN43srvtdM4F0tC6rE02nMKQkDz8b1QPNp88iPTUZZYdq8cCbO/DIPw1SKohLhBtu8KqNAFF9mzF53zwGIhLZfWCyj9Ib7CyEFu2Y0WM2kDbqsnpo2kD887LNuhV5vTLkWbUbvBbVWlfdsM0AJu+bxUBEMjsPTPZRup/dhdCiHTNd8zItn9VWr8vqbzWNhtMCuGnIM2BfArAMKrWuqhYURcM8vPgxELGBXQem2/ooVW9qdYLdhdCiHTOdczNMB9JG3UtaXVY1DcaVet0y5BmwNwFYBpVaV1UKikgO95zZFJWb+ihVbGpVITCKpRCalesZ6zET7/LNdC/JHPJs5761OwFYBpVaV1UKikgOBiIe44Y+ShWbWlUJjKIWQstMtbxSbyLHjFarRxJgqntJ1pBnu/et3QnAMqjUuqpSUERyMBDxINX7KFVrak00MLJyhItRq8CY0nyUfV0rJYAzc8zotXo8OGUAyipqNb8TrXvJ6iHPTgS9dicAy6BS66pKQRHJwUCEEhZvs7dqTa2JBEZWj3AxahV4YOoAXPHUJlPraTWjpNqFb+ww7H6I1v1kdsiz1nHoRNDrRAKwDKq0rqoUFJEcDER8xuq+cjPN3qo1tZoNjGSNcNFrFThSdxKNLdqVR8PraVcuhFFS7ca9x3HTqO6635WRdKp3HN45oZfh9xqard9mMhOA7aZK66oqQVGYCvlkXsJAxEes7is32+wtu6k13ouE2cBI5ggXrVaB+igtCZmBFNtmejY7lFZG0imgPyR2xrieusvKCqQgNzNg+TaTlQDsd6oERarkk3kJAxGfkNFXbrbZW2ZTq5mLhNnAKJYRLlaKtp5fVsjJH9ESrVXjO3mZmqXaZSSdGg2J3by/GmN6FWgepwuu7IcFa7Zj417rtxmf4L1JxUR7L2Ag4hMy+soTyfWQcaE2e5EIZgXw2NWDsP6rYyhsl47m02eRkZaCo6EmjO/dUXedoo5wsbgLwiiAe2DKAFz+1EbN78nIhYg61DYrYFvSqdGQ2Bc3HcCbs0bj/rU72myzYSXtMW9VuebvWbHN+ATvPaol2nsFAxEbqPA0IiNBNNFcD6sv1IlcJASAd7ZVtno6HturAON6d9T9PZl1L/ToBXAHqxsM80eszoWIdaitVcXXzA6JbWw5gyRAc5s5MTu23fgEby3VEu29goGIZKo8jchIEFVtWJ3Zi0TkYh1nE72suhfRaAVwOQal0WXlQtg5u3C0fZuSlISZPyjF0OL2kRatLytqsLsyhPx/BFznb7PcDONKrl6oT8EneGuplmjvFQxEJFLpaURG0KDasDqzF4lELtaJ3IytrD9itH9l5kKYHWobL6N9mxVIQbeCLCzftL9V90w4INT7t6kWSMvAJ3hr+eGYcQIDEYlUehoJZgXw0NQB2rOeTh3giaQ880mniV2szdyMra4/YhQUys6FsENBTgBXDuyMacO6ojA3HfVNZ9AuIxVHQ02oO3kKC9fs0BxGfd+a7Ya5QSoF0jK47QlehW5sI344ZpzAQEQilZ5G6hpb8MBbOzGkJA8/G9UDzafPIj01GWWHavHgWzvxy2sGG55ERhcIVZLyzAZbdl+sE60/orcv9IJCp3IhrGzxCWYFcNdlfTBfI3h7aOpAPPLOLs3vRQu0VAqkZXDTE7wq3djReP2YcQIDEYlUeho5Xt+CD3ZV4YNdVbrv651Iql0g9G7EZoMtuy/WidQfibYvVMmFsLrF52ioqU0QAoRbPcrx2NWDcPNvv9D8brRE3UQCaT7BW0OlbuxYqPLw5RUMRCRS6WkkWuuM3sUa0C8WZfc8LIDxjbjp1BlTwZbdF2uz9UdULSB3PhkVZ6MFb3dP6qP5nqxEXUC9AF1PIk/wdgVaKnVjk/0YiEhktj6FDNGS/fQu1kbFouyehyXajfi+K/sZft/uuiZ6zNYfUbGAnBYZFWejBW8NzWc0R81065AlJVFXpYkSY2HmCd7OQEulbuxEqd5KpiIGIpKZqU8hg9lRFUbFogB587BonczVDcY34rNnhe7yAPvrmugxW39EtQJyemRUnI0WvAUz01BWUdNm1MzkQUW46/Vtmt9J5EnbqYkS7brJ2d1VolI3diLc0kqmmmSnV8DLotWnqGs07ru3UvipeGyvglavh0dVnL+OYRv3HMfQ4va6y01kHhY9h2tPYuaKMkx4cgOmLd2MCU9swKwVZRD4pvVGT2PLmTb/vjCVEvPC9UdGl+a3ej1a/RErCsj1LMzBkJI89CzMkRZ0yag4Gw7etIwuzUfdyVOaQe9fa04aLjc8UeC+qnqUVdRg37H6mM7LWLs6z19uVZQA/WioSXeZeufF4Vrjf6MZsQRaVgo/KGlR6dw1Ei14s/N67zZsEZFItX5Ps6Mq9MiYh8XoZF681nh6+WBmmisS8wBz9UdUyjkyIqPirFHxuIenDcTVyzabWlezEwWa7eq8/6r+KKuo1fyeUbdVoi0U8bak2N1V4pakWiOqXe/dhIGIRCr2e5oZVdE1L7PNDTDaBUJGHsTGPcdx27iemoFI+EYczAq4ZmhdvPVHVMo5MiKr4qxe8FYVOqn7hF52qFZ30rtEJgo029W5MEowXd98WjNoSOQmZ6a7wImuErcPi1Xxeu8WDEQkcku/Z7Qn7c65GXFfIGTlQaSnJbe5sYzRmF7dLReveKmScxSNrPLvWsFbvUHr24ubDuCdO8dg4RvbLZ0o0GwBOaN5cbICKcjP1m5JuXNCL91/IxDD9AUKjbRyQ00iM9xyvVcRAxGJ3NKUHmuzaDwXiE65GXh42kDcq9OUbjYPIic9FZMGdMZNI7tH6oRUhZpw+szZmNfNrczOieMUu8q/G51nw7vlIS8rzdREgdGeYK3u6lxwRV8sfGOH5v6dMa6n4Xetnr5AViVmLydzuuV6ryIGIhK5qd/T6loDAPCgTnGxh0wWFxvTqwBbvq7B/NXb27w3ujTfVH0KN2EftDazgbTRRIFAbE+wZrs6z28tHF2aj2Hd8jBP49gGgM37qw27mBKZvkDv/E2kErMWtxUti5ebrveqYSAimZv6Pa2sNfDAlAHYvK/a0uJi90/pjyue2qS5PLP1KdyEfdD6zJxnsp5gY+nq1Oq2Mhr98uKmA3hz1mjcv3ZHnLlaxsGUXrKu2fPXiB8CaTdd71XCQMQGbu73NGL0hGO2/gigfzLvqao3bEo3U5/CTdgHbSze80zWE2wsyw0CceW6NLacQRJgebCll6ybyPmrxy+BtFev9zIxEHGYW6rwxVtgzCgpDzBXXCwn3fr6FG7CPmjrJfoEq1chVUYLTf4/rg1WBVtGybqJnr9aGEi753pvN29fuRXnlsQtvfVcdFV/ZAVSDFsptJi9acqoT+EmKvZBe+HCavYJNlqFVDNBg4wEUb2gKFqyrh6z56/fA2m3XO+dkCSEMK6L7aBQKIRgMIi6ujrk5uY6vTqWqmtsadM3Gza2V4EyiVtG6zmmVwEGF7fXbb59b/YYPPz2Ls2bZpHJE6+iukG3PoWZ+WtUZXSDD7/ndB+0ny+sR0NNmPM/WzWrB8eSOK2XIDr3D/+HPkW5kTlzwgmiuytDphJEjeyrqseEJzfovs/z1zpWXO/dFvTHc/9mi8h5ONtka4kUGDNTfyRMbz8kWp9Cxv61epnRbvAq9EF7fQRENIlM7Gd1grdZMuoHGalrbLF8JI5bJHq993rQz0DkHJxtsq1YCoxFq7pq9ayfZutTyNi/Vi9TxRu8Vh5EQ/NpVwTSssiYwkBGgqgRGfWDjByvb8EHu6psC7RUksj13u7y/k5gIPIPnG1SW7T1bJ9pbUl1WftBxnJlLFO1ljK9PIj7rxpgmB+kSiAti6wpDKxOEI3G3lmZ3fHwJUMi13u7y/s7gbPv/gNnm9QWy3paOaurrP0gY7kylunUxVprptijBjPFhicg1NMuI83UrLZuEW02YLNTGOiReU2wb1Zmdzx8yZDI9d7sNcFNswEzEPkHp2abPP/gVK0Kn93rKWs/mJ22PZFlmpli3omLtd708n83yIPYuPc4Rl6gfSMe26sAGWnJtk1Z74TwxH7nByPRJvaLtn/DE0yeS7VrglluefiSIZHrqNlrgt0P14lg18w/OHEDSAIwaWARpp87b8qJ5pi+a2fSpZ3Nt7L2g9lp2xOZodTMFPN2TzYGQPep6fZG40ArkKqdH/TItIFYtHaHUnkuMgRSkjHzB71w96Q+qG86g5yMFDQ0n0EgRf/5zu4E0URZeZ1Rcfi5ncxeR81eE9zUFcZA5B/sHuNe19iCf9e4AYR/z+hi7UTSpV0jNZwou200bXsiM5SamWJe1sXaaKTGlq9rNL+TnZFiuMycjFTNC2t1Q4tuQqJXElnrGltwl4nz1+4E0UTIuM74vQS6meuo2WuCm7rCWEfkHIdrT+rubLPj5vVEG8P/4Zxx6FmY0+Z1GfVHVKtpIms/6C333iv64oe/0q4wCejvC6NlhqtW6iVzGi0TsLZWiNlaMC9MH46X/nRAt4CcXq2MsooaTFu6WXd91tw+EkNK8uL8V6jF7PkbpkotGD2JXhPcMFLDbeI9ZuoaWzBrRZnug5Ls67pydUSWLl2Kxx9/HJWVlejfvz9+9atfYcyYMXb8dFwSidb1Sj3rMdtsJmNUhWojNWQ9NZmdtt3MvDiJTjFvZQuU2ZEad6/chtdnjMR9a7QLUJnNg1DpScysRJu9VagFY8QPIzXcRpW5lGSQHoi89tprmD17NpYuXYpRo0bh2WefxaRJk7Bz506UlJTI/vm4mblARCv1rMXsxVpGv5/ZqcJlHsiyLtRay402bbupeXEsmGLeKtH2b0pSEmb+oDRSzTMjLQVfVtRgd2UIeVlpcReQ80Mpb68HW7JGanglP8gt3NIVJj0QefLJJ3HzzTfjlltuAQD86le/wnvvvYdly5ZhyZIlsn/eUlo346bTZ3WHOM5fXa7bfG32Yi3jAigj6dJNZNw47U46NZt1nxVIQbeCLCzftL9V90w4kA5mac8Ua8RNT2JmeT3YkjlSwwv7301Ub30DJAciLS0t2LJlC+65555Wr1966aXYvLltH3JzczOam78dNRIKhWSuXlz0mhvnX9HXVKlnsxdrJ26aZpIuZYq3GywaGZON2Z10Gm0kzsS+hbjwnDlMwq0e3TpkYeGaHZqB9H1rtpvOBXDLk5hZXg+2/DBSg9QhNRA5fvw4zpw5g06dOrV6vVOnTjhy5Eibzy9ZsgT333+/zFUyxai5cXqNcV2E+ubTll6sZVwAjZZpNFW4SpU+E5k0K9E5MOy6GZtt9g5mBbDgyn6Yt7q8TavH5EFFuOv1bZq/l2gugBuexBLh5WDLbHDu9S4rksOWZNWkpKRWfxdCtHkNAObNm4c5c+ZE/h4KhVBcXCx9/aIxam40khVIQX62cX0KMxdrGRdAWUmXZlnZDRZNInNg2HkzNtvsXdfYgnvXbNfcbn+NEkjLygVww+SDsfBqsGU2OPd6lxXJITUQKSgoQEpKSpvWj6qqqjatJACQnp6O9PR0matkilFzY9mhWlzSpxB9umg0e+dlYuEbO+KuTxFmdGE1ewGMd5lOJF3q3dznXW6uGywatyTmmU0qNhtIA3JyAdww+aDfmQ3Ovd5lRXJIDUQCgQAuuugirFu3DtOmTYu8vm7dOkyZMkXmT1vKqLnx1c8q8PqMkbh3Tdtm76uHfQeL3typ+T23XKydKPRmttJntBlR9bglMc9sUvGdE3rpfqfsUC3G9CrQrRdhdS6AWyYf9LtEcj283GVFckifa2bOnDl4/vnn8eKLL2LXrl3413/9V1RUVGDGjBmyf9oyRnMkzL30QizQafZe+IbxxGB2TlZkdpmJzJFghtHNPVqlz2gzouoxOweG3Yl50dZTL6m45fRZ3WW+uOkAHpwyIO79q9L8F26aU8Mpds95FMyyZyI98gbpOSI/+tGPUF1djQceeACVlZUYMGAA3nnnHXTr1k32T1vGqLlxWEl7zFtVrvk9s9N6q1a0TJWpwqtCzZjQpyP6dgm26QbbdbhOd8bTaNxSQtkogfDBqQNw9TLtaqab91frtnoM75aHvKy0uPevSqMqOFLDmBtaQsnfbElWvf3223H77bfb8VPSmK3KmZQE3WJRZi/W4Zli40nMc0slSKOb++K1O/BfN39PsxvsYYNKn7EwE2w5MUGdUQLhdReXaJZqf3HTAbw1azT+fODvKGyXHjkOj4aaML53R1Pzm6gUvHGkhr5ERlox14Pswknv4mCmKud32mfihU0HdItFaXFiplhVLtZGN/fbx5fqdoMtiKHmRTSqlFA2mqBu875q3QTC6y/Wr1ScnJSEd7ZVtkqcHturAON6dzS1joA6wRuf3vW5pSWU/I2T3iUo2sRCkwYWaXbdGE06ZLTMJf80sM0NJdFlOjGxnREZk9PJpMIEdQDw8k3fxRcVNZpFy9ZuPRz3MSOLjEkN7Zyw0k38MAEhqUm5Se9UY2W9ARnFwMzmpJhdpmpNrTImp5PJrlohRjlHRqXaEylaJoOddXBUOq6d4JaWUPI33wUiMobFyigGZudMsSperGVMTucG0XJ59Cy4sp9uqXazRctkkpFz5NXiYolgtxW5ga8CEZnVIGUUA5NxM3bzxdoPF9VoT7Bd8zIxujS/zagZo5ayaFQL4JyokOpVbmoJJf/yVSBidzVIJubZ1w3mlYtqtP277a91mqNm/lar3+phtmiZE1gh1Xpuagklf/JVsqrZxC2jBMJoyX5+TsyTdVOxMjnUClY/wevt33DOkVZ33wvTh+Pm336hubysQAreuXMMFr6xXeljJpHzjIjUwmRVHU6U8lYtMc+uZm+ZZbdV6l5SJefIqNXDbNGyMLuOGbtL5hORGnwViDhVDVKVxDw7m739cFNJNNg6GmpCTUMLQk2nkZuZirysQKQoW7w5Ry9uOmDY6mGmaBlg7zHDCqlE/uSrQESlapB2s3vadj/cVBIJtiqqGzBvdXmrUS7hQncl+dma3zEKpBNt9dBi92RyXjjPiCh+vgpEAHWqQdrN7kRdP9xUzAZbR0NNbYIQ4JuhtvNXl+OJa4dolquPNZC2o6aJjFYtu0vmu71FjtyHx6E23wUigDqlvO1kdv4aAKaeiv1wUzEbbNU0tLQJQsI27a1GTUOL7rw5qkxACFjfqmV3yXyOxCE78TjU58tAxAy3D4EzO3/NvVf0NfVU7Iebivmco9OGy432vgoTEAJyWrWsPs/s7pKMZ71UCKbJHnZ3c7oNA5E4qDRaI15GN80FV/bDgjXb28xF8sme45ieQFVO1W4qVgtmBfDQ1AGYv7q8TYGxh6YOMMg5Mj7tor1vF6e6JO0qmS+jSzIWKgXTbuLm4M0PyfuJUOOKR9IFswJ47OpBWP/VsTZTwV/UTV5VTlVuKjLUNbbggbd2ahYYe/CtnfjlNYM11ycvO4AJfTqib5dgmwnqdh2uQ162Gt1WfuiS1AukZQW9qgXTbuH24M0PyfuJYCDiIwLQnAr+4h4dkBVI0axRIbMqp9tH4hyvb8EHu6rwwa4q3fe1/j2dcjOwcHJ/zF9d3maCuoenDdTND4nGzpombrlZOlE7yIhqwbQbeCF480PyfiKSnV4BskfkZNboflm8dgd+PrqH5vde3HQAD04ZgLG9Clq9bkWux8wVZZjw5AZMW7oZE57YgFkrynDYoFS5aidzIk/b963ZrjlqZsGa7ahrNJ5PSG+ZRhdrM8sMC2YF0LMwB0NK8tCzMEf5i/65wt1LWmTWDtITa9L4vqp6lFXUYN+x+oT2nRfEErypzuxx6BdsEfGJaNPL3zauZ6un8zCV6lMU5AQwsW8hLizKbdOlsbsyZPvJrNLTtlNP2jL67VXoXpIV9JpNGndLF4QMqrWEmuGFbk6ZGIj4RLSTOT0tuU1iomr1KYJZAdx3ZT/dLg27T2anKvWaXaaMOXGs7gpSpXtJVqKu2aRxt3RByKBaS6hZbu/mlImBiE9EO5nbZwaUr09xNNSEe3UKgd1rUAhMFpWetqMtMzOQYumTtox+e5XmJ5L1BGu03GEl+knjbssfsTLo9UJByTA3j7yUiYGIT8RyMqten6KmoaXVMNlzRSsEJosqT9vRlvllRa2lN3gvdS/pkfUEq7fc/ccbDL8nqwtC9ZYydmt4HwMRn1DpZHaqEJgsKjxtGy3zgSkDcPlTGzW/Z/YG71T3kt1kBeday83NME66lNEFYXXQIKtVi90a3sZAxEdUOZnNd2m4oxBYLGTsC71lHqxu0ByaHWbmBu9E95JbcgHMsrsLQkbQILNVi90a3uWeKzdZQpWT2cyNOC87gNGl+ZrdM6NL8xMqBOYEGftCa5k5UYY3mrnBO9G95IX5iYzY3WopI2hQsVWL1MdAhBwT7424U24GHp42EPdqlFRPpBCY18m4wcvqXjJTMj8aN1XlVG1Sw3gDOL+3apE5SUII4fRK6AmFQggGg6irq0Nubq7Tq0MOq2tswdw//B/6nFNHJFxSfXdlSLekOn1zM9YLGooSuBmHb1RW1ZdJZP/qzR59/mihsLG9Chyb9E4F+6rqMeHJDbrvvzd7DB56e1dcAVxdYwtmrSjTDXpVG4Ls5f3rtHju32wRoYTZdTKbLanuJ3r7QtaTttVzCZndv3qtHmZnjzZapootKWbIGGmlUlJ8NF7fv27CQIQSYufJzP5nY9H2hSr5QXpkTFBndvZoL8xvEo2skVaqJMUb8cP+dRMGImSa3Scz+5/1qXhhtSu/wCjpMhq7J71TjayRVqoHvX7Zv27BQMRhbu6jtPtk9lKFxURoHTPVDWpdWM20lMkomW929uhYW2eOhppQ09CCUNNp5GamIi8r4LqkabtGWqnEqdZVN1/vZWIg4iC391HafTIHswJ47OpBWP/VMRS2S49Menc01ITxvTv64oTWO2YWXdUfWYEU3adYOy+sAEy1zsgomf/ipgN4584xWPjGdsvL8FdUN2DeeVMOjC7NxyPTBqIkP9vw+6pTbYJJqznRuur2671MDEQcomJTerycOJkFgHe2VbaaGGxsrwKM693R8t9SjdExs3jtDvx8dA/NGZQBey+siSSIWl0y3+zs0dFaZzIDKbjr9f/TnPdovgPzHlktmBXAgiv7YZ7GBJOPODDBpNXsrlkDmAvO/SLZ6RXwq1i6NVQXPpm1WHEy76uqR1lFDfYdq0ddY8u3N2Kd2UnrGtXfZokwOmY27jmOkRfka75nd1XOv5pMEA0LZgXQszAHQ0ry0LMwJ+oFOtyScv6xeG6rh9XLPNF0qk0QEhae98jN6hpbcO+a7ZqB1n1rtkc917TOX5XEcsyYcbj2JGauKMOEJzdg2tLNmPDEBsxaUYYjoSbXX+9lYouIQ7wwAkTWUD0ZT9peEO2YSU9LbvOU50RVzmhktM7YWTI/mBXAoQPGwZZT8x5ZJZH8L7d0QVh9zMgYveUXvgxEVEgY8soIkERO5nibMGM9mVXYvzJEO2baZwaUqMppNkE0Fkb71q6S+YC35j3SImMotYpdEFbXwVEpOHcTd58tJqgSrXtpBIiZk9lMq0c07TLSlNm/MsRyzNg1bFJGgmg0Ku1br817dD4ZQ6m93mrpVHDuBb7KEYkWrdvZjymrj9INzOYXhE9mLWN7FSAnI1WZ/SuDSseMUX7QuQmiH84ZhzW3j8SHc8bh6euHmi4nr9K5C3wz79Ej0wZidGnrvJxwMqebE1UB8/lfXuhyNitacP7glAFKnLsq8lWLiGrRutXdGomuu52l2s20ery46QDevnM0FqzZrjkpWkPzaaX2rwyqHDOxTlBnR7O3U/u2JD8bT1w75Ns6IhmpyMt2Xx0RLTKGUgPe7oKQMXrrXF7tcgZ8FoioGK1b2a2RSBO1KqXajZowh3fLwxcHazCkJA8/G9Wj1aRoD761E7d9v6fh73qlSJEKx0xdYwseeGun7r6wegJCFc9d4JuWES8EHlqsHkrt9S6IWIM3M+eFSt2SMvgqEPFCtC4jGUylUu1G+QXh+S/0inbNvfRCw9/1Q5EirUqfGanJlu9fuycg9MK560bxBr1umvROBhmjt9yWAGyGrwIRL0TrMpqoVSrVbtSEGW3+i5TkJFv3r2oXCL1Knwuu7Gf5/rW7hcIL565fuGHSO5msThhXsVvSar5KVlUp2c8sGTcAJ0q1mylAlZNu/NSbkpxk6/51qiidVrGoo6GmNkEI8E0BqkQLjGmJ1kKRm5lmaVErL5y7fhJvATnSp2q3pJV81SICuD9al9FE7USzt9n+Z6P5L/L/kZuhQi0N4JsLhNX5I3pdQfOv6Ktb6TMaM/vXqIViYt9CBFKSMXNFmaVdVm4/d4nM8EO3pO8CEUD9KaqNyGiidqrZ20z/cyzzX6hQSwMAMgMplt6MzVZulFHDwCgXYPFV/XHPqnIpXVZuPneJzPBDt6Svuma8QEYTtVuavROd/8Jq0WotfFlRa2ndi0SGPT9wVX/L928SgEkDi/DC9OFYesMwvDB9OCYNLEJ9DMOoZVB9fhMiM9xyfU6EL1tE3M7ueTVUoVrSllEtjQenDsDVyzZrfk9GgmjZoVqMKS1oMyEgAAwraY/s9FTL59X4d43WGQB4Yfpww+/K6NNWbfQSkZXccH1OBAMRhakyr4YqVEvailZL47qLS1p1ISW6rtGGPesVe3t42kAU/qPWhRfn1Uh09JKsOjBeLkBF9lP9+pwIBiKK4hNeW6olbUWrpXH9xSW637U6QdSo2NtDNhcYs3vSOxVniuX5SxQ7BiIKUq0+hSpUS9qK1kKjR0aCaLRib3YWGLN70rs7J/Qy/J7dM8Xy/CWKDwMRBamWC6GKYFYAj109COu/OobCdumR4btHQ00Y37uj7dskWgtN17zMNjO0nj8XS7z0+oqjFXuzs8CYFfNqnM/o5j5jnHFpf7tniuX5SxQfBiIKUi0XQiUCwDvbKlslZY7tVYBxvTvavi7RWmi2/bVOylwsWn3FOVFGoljdbSVzXg0tRjf3zfurTXUFyTrPeP4SxYeBiIJUy4VQReSpeK8aTd4qdZU40W1lZya/0c39xU0H8Nas0fjzgb/H1VIm6zzj+UsUH6mByMMPP4y3334bW7duRSAQQG1trcyf8wzVciFUoWKTtypdJU5NNqZK8bikJOCdbYex8ZxusDGl+RjVM1/3O7LOM56/RPGRWtCspaUF11xzDW677TaZP+M5fihgY4aqTd5m5sWRWTb/wznjsOb2kfhwzjg8ff1QFHlglIZR8bgFV/bDwjXbWwUhALBxbzXmry7H0VCT5vdknWc8f4niI7VF5P777wcAvPzyyzJ/xpO8XsDGDDc1ect8Kj4aakJNQwtCTaeRm5mKvKwAOp1TJ8SLx4hRi8/QkvaYt6pc83ub9lajpqElsn3OJ+s84/lLFDulckSam5vR3Nwc+XsoFHJwbZzn1ZuKWbKbvK0sQCWrq6SiuqHNLLvhuXZK8rNNLTMRdhbt0ru57z5ab/i9UNNpw/dlnWc8f4lio1QgsmTJkkgrCtH5ZOZByChAlchTsdYNvun02TZBCPDNU//81eV44tohuk/+MjhRtEvr5p6bYXwZi/Y+ETkr7jN08eLFUYOFzz//HMOHG883oWXevHmYM2dO5O+hUAjFxcVxL4e8S0aTt8wCVGaeivVu8PMu79smCAmL1gVhNZWKduVlB9rUawkbXZqPvGy2ShCpLO5AZObMmbjuuusMP9O9e3dTK5Oeno709HRT3/UizlWhzeomb5VG4xjd4G9vNE7GDTWdlnLMaC2zukGdbdYpNwMPTxuIezUmH3x42kBbW4mIKH5xByIFBQUoKNDOXifr+GGuClUCLZVG4xgFRdkZKYbfbZeRipkryiw9ZvSOw0VX9UdWIEV3iLKd26yusQX/8e5f8LNRPXD3pD6obzqDnIwUVIWa8fi7f8HD0wYygCdSmNTO04qKCvz9739HRUUFzpw5g61btwIASktLkZOTI/OnXU2lZm9ZVAq0VBqNYxQUVYWaDbsg6k6esvSYMToOF6/dgZ+P7qE7u7Cd2+x4fQveLj+Ct8uPaL7/rxMvdP35QuRlUuuILFy4EEOHDsWiRYtQX1+PoUOHYujQofjiiy9k/qzrxdJV4GbRAq26Rnv/fUY1KuwuQGUUFN29chsemjoQo0tbF+kKd0HM/P2Xmt8ze8wYHYcb9xzHyAu0i4XZvc1UatEi76hrbMG+qnqUVdRg37F6269LfiK1ReTll19mDRETnLqw2tVVolJOBuBcVVItRkOU+xXlIi8rDU9cO+TbOiIZqcjLDqAqdNIw2GhoPhX3/o12HKanJbdZVye2mUotWuQNKrXY+gHHtSnIiQurnSeeik+wqhSgiiUoCgJtEjDrDWplZAVSkJsZiDt/JNpx2D4zoMQ2Y0l1spIfusZVw0BEQXZfWO0+8VR9glWlAJWZoMjomFlwZT8sWLM97skCYzkOVdhmKrVokfup1mLrBwxEFGT3hdXuE89NFVJlsrJUu9ExM8ygBLrR/nXTDV6VFi1yPxVbbL2OgYiiVJliHfjmxHND+XPAPX27Mkq16x0z+483GH7P6MLqphu8Cq0z5H6qtth6GQMRhakyxXpmIMXy+hRuq5BqpaOhJmml2rVLoBtn+0e7sHrhBu+WVjJyHnOO7Cd1+C65Q7Thq19W1EoZahvMCqBnYQ6GlOShZ2FOwjcGtwx7rmloiVqq3UoqDU92wuHak5i5ogwTntyAaUs3Y8ITGzBrRRkO1550etVIQeEW2/PPGRW7JL2CLSJk2FXywJQBuPypjZrfUy1xyy19u9Fmg432frzclOthtURbydiS4k9u6pL0AgYiBED/xDtY3aBbxhtQ5+YOuKdv14nZYv16YU0kEdst+UYkhxe6JN2CgQhFaJ14OVG6M1S5uQPu6dt1arZYP15YzbaSWZFvxNYU7+K+tRYDETLklps74J4uiE65GXhk2kDM15gt9hHOFmsps61kiQ5pZ2uKd3HfWo+BCBlyy809LAnApIFFmD6yO5pPn0V6ajKqTjQ7vVptlORna5ZqZxBiLbOBdCL5Rm4ZvUXx476Vg4EIReWW/IK6xhb8u8ZFAvjmpqPaRaJTbgYDD8mCWQE8dvUgrP/qGArbpaP59FlkpKXgaKgJ43t31D0eEsk3YmVO7+K+lYOBCMXEDfkFvEiQFgHgnW2VrUrcj+1VgHG9O+p+J5EuSbeM3qL4cd/KwToi5Bm8SND5Ik3pOvPs6NXBSaSWhFtGb1H8uG/lYIuIwpiZHR9eJOh8ibSSme2SdFOCN8WH+1YOBiKKYmZ2/HiRoPMl2kpmpkvSbQneFDvuWzmShBDC6ZXQEwqFEAwGUVdXh9zcXKdXxzZ1jS1t5nYJUzHpUiWHa0/qXiSKGMDp8mrr276qekx4coPu+x/OGYeehTlSfju8TVVO8CZzuG+ji+f+zRYRBTHp0rxERvjIuBm74Qbv5dY3J1vJ3JDgTeZw31qLgYiCmHSZGDMXCRk3Y9Vu8FpBEQBP10VgUzqR+hiIKIhJl/aSUaRItcJHekHRvVf09Xzrm4p1cNzQUkZkFwYiCmLSpb1kdIWp1L1mFBRNrzlp+F2vtL6p1JSuWksZkdNYR0RBidQwoG9uvPuq6lFWUYN9x+p1a0WEyegKU6l7zSgoioatb9aK1lIW7Vgl8iK2iChKxeZkNzDztCmjK0yl7jWjoKjsUC3G9CrQHaHF1jdrqdRSRqQKtojEId4n7UQFswLoWZiDISV56FmYwwtUFGafNsNdYVrM3oxlLNMso6DoxU0H8OCUAWx9s4lKLWVEqmCLSIzYr6s+s0+bMkZWqDRawyjnaHi3PORlpSnV+ublRE6VWsqIVMFAJAaqjYAgbYk8bcroClOley3WoEiFY9jrAT8T0YnaYiASA/brukOiT5syRlaoMlpDlaDISKIBvxtaUlRqKSNSBQORGLBf1x34tGlMlaBITyIBv5taUtwQFBLZicmqMWC/rhxWJ/9y2LO7mQ343TgklonoRN9ii0gM+KRtPVlPsHzadC+zAT+7ToncjS0iMeCTtrVkP8HyadOdzA55ZtcpkbuxRSRGfNK2Dp9gSYvZRE52nRK5GwOROKie7OcWfIIlPWYCfnadErkbu2bIdnyCJSPxdq2x65TI3dgiQrbjEyxZjV2nRO7FQIRiYmWxKBZ1IhnYdUrkTgxEKCoZQ235BEvkT26ogEv2YiBChmTOs8MnWCJ/cVMFXLIPk1XJUCxDbd3E6mquRBQbN1bAJXuwRYQMeWmoLZ/GiJzD+kGkhy0iZMgrQ235NEZ2Y+tba156qCFrsUWEDHllqC2fxshObH1ryysPNWQ9toiQIa8Ui+LTGNmFrW/azM4lRN7HFhGKygtDbfk0RnZh65s21g8iPQxEKCZuH2rrlS4mUh9b3/R54aGGrMeuGfIFr3QxkfrY+mYs3rmEyPvYIkK+wacxsgNb34jiwxYR8hU+jZFsbH0jig9bRIiILMbWN6LYMRAhIpLA7QneRHZh1wwRERE5hoEIEREROYaBCBERETlGWiBy8OBB3HzzzejRowcyMzPRs2dPLFq0CC0t/ixvTO7GCcyIiOSQlqz6l7/8BWfPnsWzzz6L0tJSbN++HbfeeisaGhrwy1/+UtbPElmOE5iZU9fYguP1LQg1nUJuZhoKspm8SURtJQkhhF0/9vjjj2PZsmXYv3+/5vvNzc1obm6O/D0UCqG4uBh1dXXIzc21azWJIuoaWzBzRZnm3CFjexXg6euH8uaqgcEbkb+FQiEEg8GY7t+25ojU1dWhQ4cOuu8vWbIEwWAw8qe4uNjGtSNqK5YJzKg1zj5LRPGwLRDZt28fnn76acyYMUP3M/PmzUNdXV3kz6FDh+xaPSJNnMAsfgzeiCgecQciixcvRlJSkuGfL774otV3Dh8+jMsuuwzXXHMNbrnlFt1lp6enIzc3t9UfIidxArP4MXgjonjEnaw6c+ZMXHfddYaf6d69e+T/Dx8+jPHjx2PEiBF47rnn4l5BIidxArP4MXgjonjEHYgUFBSgoKAg+gcB/O1vf8P48eNx0UUX4aWXXkJyMsuWkLuEJzC7Z+W2VsEIJzDTx+CNiOIhbdTM4cOHMW7cOJSUlOCVV15BSkpK5L3OnTvHtIx4sm6JZAoPReUEZrGpqG7A/NXl2LS3OvLa6NJ8PDJtIErysx1cMyKyQzz3b2l1RN5//33s3bsXe/fuRdeuXVu9Z+OIYSJLcAKz2NU1tuCBt3ZiSEkefjaqB5pPn0V6ajLKDtXiwbd24pfXDOa2JKIIaYHITTfdhJtuuknW4olIUcfrW/DBrip8sKtK930GIkQUxqQNIrIUR80QUTwYiBCRpThqhojiwUCEiCwVHjWjhaNmiOh8DESIyFLhIc/nByMc8kxEWqQlqxKRf3Vpn4mnrx/KIc9EFBUDERtwOnTyIw55JqJYMBCRjNOhExER6WOOiEScDp2IiMgYW0QkimU6dDZduwO714iI5GAgIhELO3kDu9eIiORh14xELOzkfuxes19dYwv2VdWjrKIG+47VcxsTeRxbRCTidOjux+41e7H1ich/2CIiEQs7uR+71+zD1icif2KLiGQs7ORu7F6zD1ufiPyJgYgNWNjJvdi9Zh+2PhH5E7tmiAywe80+bH0i8ie2iBBFwe41e7D1icif2CJCFINgVgA9C3MwpCQPPQtzGIRIwNYnIn9iiwgRKYOtT0T+w0CEiJTC5G4if2HXDBERETmGgQgRERE5hl0zRC7DmYCJyEsYiBC5COdiISKvYdcMkUtwLhYi8iIGIkQuEctcLEREbsNAhMglOBcLEXkRAxEil+BcLETkRQxEiFwiPBeLFs7FQkRuxUCEyCU4FwsReRGH7xK5COdiISKvYSBC5DKci4WIvIRdM0REROQYBiJERETkGAYiRERE5BgGIkREROQYBiJERETkGAYiRERE5BgGIkREROQYBiJERETkGAYiRERE5BgGIkREROQYpUu8CyEAAKFQyOE1ISIioliF79vh+7gRpQOREydOAACKi4sdXhMiIiKK14kTJxAMBg0/kyRiCVcccvbsWRw+fBjt2rVDUlKSpcsOhUIoLi7GoUOHkJuba+my3YzbRR+3jTZuF33cNtq4XbR5absIIXDixAl06dIFycnGWSBKt4gkJyeja9euUn8jNzfX9TtcBm4Xfdw22rhd9HHbaON20eaV7RKtJSSMyapERETkGAYiRERE5BjfBiLp6elYtGgR0tPTnV4VpXC76OO20cbtoo/bRhu3iza/bhelk1WJiIjI23zbIkJERETOYyBCREREjmEgQkRERI5hIEJERESO8WUgsnTpUvTo0QMZGRm46KKLsHHjRqdXyXaffPIJJk+ejC5duiApKQlr1qxp9b4QAosXL0aXLl2QmZmJ73//+9ixY4czK2ujJUuW4Lvf/S7atWuHwsJCTJ06Fbt37271GT9um2XLlmHQoEGRQksjRozAH//4x8j7ftwmWpYsWYKkpCTMnj078ppft83ixYuRlJTU6k/nzp0j7/t1u4T97W9/w09+8hPk5+cjKysLQ4YMwZYtWyLv+2n7+C4Qee211zB79mzce++9KCsrw5gxYzBp0iRUVFQ4vWq2amhowODBg/Gb3/xG8/3/+I//wJNPPonf/OY3+Pzzz9G5c2dMnDgxMv+PV23YsAF33HEHPv30U6xbtw6nT5/GpZdeioaGhshn/LhtunbtikcffRRffPEFvvjiC/zgBz/AlClTIhdGP26T833++ed47rnnMGjQoFav+3nb9O/fH5WVlZE/5eXlkff8vF1qamowatQopKWl4Y9//CN27tyJJ554Au3bt498xlfbR/jMxRdfLGbMmNHqtT59+oh77rnHoTVyHgCxevXqyN/Pnj0rOnfuLB599NHIa01NTSIYDIr//M//dGANnVNVVSUAiA0bNgghuG3OlZeXJ55//nluEyHEiRMnRK9evcS6devEuHHjxC9+8QshhL+Pl0WLFonBgwdrvufn7SKEEHfffbcYPXq07vt+2z6+ahFpaWnBli1bcOmll7Z6/dJLL8XmzZsdWiv1HDhwAEeOHGm1ndLT0zFu3Djfbae6ujoAQIcOHQBw2wDAmTNn8Oqrr6KhoQEjRozgNgFwxx134IorrsAll1zS6nW/b5s9e/agS5cu6NGjB6677jrs378fALfL2rVrMXz4cFxzzTUoLCzE0KFDsXz58sj7fts+vgpEjh8/jjNnzqBTp06tXu/UqROOHDni0FqpJ7wt/L6dhBCYM2cORo8ejQEDBgDw97YpLy9HTk4O0tPTMWPGDKxevRr9+vXz9TYBgFdffRVffvkllixZ0uY9P2+b733ve3jllVfw3nvvYfny5Thy5AhGjhyJ6upqX28XANi/fz+WLVuGXr164b333sOMGTNw55134pVXXgHgv+NG6dl3ZUlKSmr1dyFEm9eI22nmzJnYtm0bNm3a1OY9P26bCy+8EFu3bkVtbS1WrlyJ6dOnY8OGDZH3/bhNDh06hF/84hd4//33kZGRofs5P26bSZMmRf5/4MCBGDFiBHr27Inf/va3+H//7/8B8Od2AYCzZ89i+PDheOSRRwAAQ4cOxY4dO7Bs2TL89Kc/jXzOL9vHVy0iBQUFSElJaRNRVlVVtYk8/Syc2e7n7TRr1iysXbsWH3/8Mbp27Rp53c/bJhAIoLS0FMOHD8eSJUswePBg/PrXv/b1NtmyZQuqqqpw0UUXITU1FampqdiwYQOeeuoppKamRv79ftw258vOzsbAgQOxZ88eXx8zAFBUVIR+/fq1eq1v376RQRN+2z6+CkQCgQAuuugirFu3rtXr69atw8iRIx1aK/X06NEDnTt3brWdWlpasGHDBs9vJyEEZs6ciVWrVuGjjz5Cjx49Wr3v521zPiEEmpubfb1NJkyYgPLycmzdujXyZ/jw4bjhhhuwdetWXHDBBb7dNudrbm7Grl27UFRU5OtjBgBGjRrVpizAV199hW7dugHw4XXGqSxZp7z66qsiLS1NvPDCC2Lnzp1i9uzZIjs7Wxw8eNDpVbPViRMnRFlZmSgrKxMAxJNPPinKysrE119/LYQQ4tFHHxXBYFCsWrVKlJeXi+uvv14UFRWJUCjk8JrLddttt4lgMCjWr18vKisrI38aGxsjn/Hjtpk3b5745JNPxIEDB8S2bdvE/PnzRXJysnj//feFEP7cJnrOHTUjhH+3zdy5c8X69evF/v37xaeffiquvPJK0a5du8i11q/bRQghPvvsM5GamioefvhhsWfPHvG73/1OZGVlif/+7/+OfMZP28d3gYgQQjzzzDOiW7duIhAIiGHDhkWGZvrJxx9/LAC0+TN9+nQhxDfDxxYtWiQ6d+4s0tPTxdixY0V5ebmzK20DrW0CQLz00kuRz/hx2/z85z+PnDMdO3YUEyZMiAQhQvhzm+g5PxDx67b50Y9+JIqKikRaWpro0qWL+Kd/+iexY8eOyPt+3S5hb775phgwYIBIT08Xffr0Ec8991yr9/20fZKEEMKZthgiIiLyO1/liBAREZFaGIgQERGRYxiIEBERkWMYiBAREZFjGIgQERGRYxiIEBERkWMYiBAREZFjGIgQERGRYxiIEJFvLV68GEOGDDH8zMGDB5GUlIStW7fask5EfsNAhEgRQghccskl+OEPf9jmvaVLlyIYDEZm57TTypUr8b3vfQ/BYBDt2rVD//79MXfuXNvXQ4Z/+7d/w4cffhj5+0033YSpU6e2+kxxcTEqKysxYMAAm9eOyB8YiBApIikpCS+99BL+/Oc/49lnn428fuDAAdx999349a9/jZKSEkt/89SpU4bvf/DBB7juuuvwz//8z/jss8+wZcsWPPzww2hpaZH6u3bJyclBfn6+4WdSUlLQuXNnpKam2rRWRD7j8Fw3RHSel19+WeTk5Ij9+/eLs2fPivHjx4spU6aIHTt2iEmTJons7GxRWFgofvKTn4hjx45FvvfHP/5RjBo1SgSDQdGhQwdxxRVXiL1790beP3DggAAgXnvtNTFu3DiRnp4uXnzxRXHw4EFx5ZVXivbt24usrCzRr18/8fbbbwshhPjFL34hvv/970dd57Vr14phw4aJ9PR00aNHD7F48WJx6tSpyPsAxLJly8RVV10lsrKyxMKFC4UQQixdulRccMEFIi0tTfTu3Vu88sorrZYLQCxdulRcdtllIiMjQ3Tv3l38z//8T6vPbNu2TYwfP15kZGSIDh06iFtvvVWcOHEi8v7HH38svvvd74qsrCwRDAbFyJEjIzPALlq0SAwePDjy/zhvssOPP/44st3KysrEmTNnxHe+8x2xbNmyVuuwZcsWAUDs27dPCCFEbW2tuPXWW0XHjh1Fu3btxPjx48XWrVujbkciP2IgQqSgKVOmiHHjxomnnnpKdOzYURw8eFAUFBSIefPmiV27dokvv/xSTJw4UYwfPz7ynddff12sXLlSfPXVV6KsrExMnjxZDBw4UJw5c0YI8W0g0r17d7Fy5Uqxf/9+8be//U1cccUVYuLEiWLbtm1i37594s0334zMSL1kyRLRsWNHw1k/3333XZGbmytefvllsW/fPvH++++L7t27i8WLF0c+A0AUFhaKF154Qezbt08cPHhQrFq1SqSlpYlnnnlG7N69WzzxxBMiJSVFfPTRR62+l5+fL5YvXy52794t7rvvPpGSkiJ27twphBCioaEhMrNreXm5+PDDD0WPHj0is0ifOnVKBINB8W//9m9i7969YufOneLll18WX3/9tRCidSBy4sQJce2114rLLrtMVFZWisrKStHc3NwqEBHim+ntR48e3WobzJ07V4wYMUII8c2sqaNGjRKTJ08Wn3/+ufjqq6/E3LlzRX5+vqiuro73UCDyPAYiRAo6evSo6Nixo0hOTharVq0SCxYsEJdeemmrzxw6dEgAELt379ZcRlVVlQAQCSLCN9Rf/epXrT43cODAVkHDuerr68Xll18uAIhu3bqJH/3oR+KFF14QTU1Nkc+MGTNGPPLII62+91//9V+iqKgo8ncAYvbs2a0+M3LkSHHrrbe2eu2aa64Rl19+eavvzZgxo9Vnvve974nbbrtNCCHEc889J/Ly8kR9fX3k/bffflskJyeLI0eOiOrqagFArF+/XvPfd24gIoQQ06dPF1OmTGn1mfMDkS+//FIkJSVFWlXCrSTPPPOMEEKIDz/8UOTm5rbaRkII0bNnT/Hss89qrgeRnzFHhEhBhYWF+Jd/+Rf07dsX06ZNw5YtW/Dxxx8jJycn8qdPnz4AgH379kX+++Mf/xgXXHABcnNz0aNHDwBok+A6fPjwVn+/88478dBDD2HUqFFYtGgRtm3bFnkvOzsbb7/9Nvbu3Yv77rsPOTk5mDt3Li6++GI0NjYCALZs2YIHHnig1brdeuutqKysjHxG63d37dqFUaNGtXpt1KhR2LVrV6vXRowY0ebv4c/s2rULgwcPRnZ2dqtlnD17Frt370aHDh1w00034Yc//CEmT56MX//616isrDTa9FENHToUffr0wYoVKwAAGzZsQFVVFa699trI9qivr0d+fn6rbXLgwIHIviKibzEQIVJUampqJEHy7NmzmDx5MrZu3drqz549ezB27FgAwOTJk1FdXY3ly5fjz3/+M/785z8DQJvE0nNv2gBwyy23YP/+/bjxxhtRXl6O4cOH4+mnn271mZ49e+KWW27B888/jy+//BI7d+7Ea6+9Flm3+++/v9V6lZeXY8+ePcjIyND9XeCbBN1zCSHavKYl/Bmjz4dff+mll/C///u/GDlyJF577TX07t0bn376adTfMHLDDTfg97//PQDg97//PX74wx+ioKAAwDfbo6ioqM2+2r17N+66666EfpfIixiIELnAsGHDsGPHDnTv3h2lpaWt/mRnZ6O6uhq7du3CfffdhwkTJqBv376oqamJefnFxcWYMWMGVq1ahblz52L58uW6n+3evTuysrLQ0NAQWbfdu3e3Wa/S0lIkJ+tfYvr27YtNmza1em3z5s3o27dvq9fODxo+/fTTSGtQv379sHXr1si6AMCf/vQnJCcno3fv3pHXhg4dinnz5mHz5s0YMGBAJIg4XyAQwJkzZ3TXOezHP/4xysvLsWXLFrz++uu44YYbIu8NGzYMR44cQWpqapvtEQ5WiOhbHI9G5AJ33HEHli9fjuuvvx533XUXCgoKsHfvXrz66qtYvnw58vLykJ+fj+eeew5FRUWoqKjAPffcE9OyZ8+ejUmTJqF3796oqanBRx99FAkGFi9ejMbGRlx++eXo1q0bamtr8dRTT+HUqVOYOHEiAGDhwoW48sorUVxcjGuuuQbJycnYtm0bysvL8dBDD+n+7l133YVrr70Ww4YNw4QJE/Dmm29i1apV+OCDD1p97g9/+AOGDx+O0aNH43e/+x0+++wzvPDCCwC+aZlYtGgRpk+fjsWLF+PYsWOYNWsWbrzxRnTq1AkHDhzAc889h6uuugpdunTB7t278dVXX+GnP/2p5jp1794d7733Hnbv3o38/HwEg0HNz/Xo0QMjR47EzTffjNOnT2PKlCmR9y655BKMGDECU6dOxWOPPYYLL7wQhw8fxjvvvIOpU6e26aIi8j2nk1SISNv5iZRfffWVmDZtmmjfvr3IzMwUffr0EbNnzxZnz54VQgixbt060bdvX5Geni4GDRok1q9fLwCI1atXCyHaJl2GzZw5U/Ts2VOkp6eLjh07ihtvvFEcP35cCCHERx99JK6++mpRXFwsAoGA6NSpk7jsssvExo0bWy3j3XffFSNHjhSZmZkiNzdXXHzxxeK5556LvH/uepwrluG7zzzzjJg4caJIT08X3bp1EytWrGj1GaPhu0eOHBFTp04VRUVFIhAIiG7duomFCxdGRhKdv42rqqrExIkTRU5Ojubw3XM988wzAoD46U9/2ubfFQqFxKxZs0SXLl1EWlqaKC4uFjfccIOoqKho81kiv0sSQggH4yAiIl1JSUlYvXp1m2qnROQdzBEhIiIixzAQISIiIscwWZWIlMWeYyLvY4sIEREROYaBCBERETmGgQgRERE5hoEIEREROYaBCBERETmGgQgRERE5hoEIEREROYaBCBERETnm/wM9Sq8CgY0FaAAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.scatterplot(x=data['YearsSeropositive'], y=res.residuals_)"
]
},
{
"cell_type": "markdown",
"id": "ddc1570e-155a-4c57-ac8d-e41eb6895574",
"metadata": {},
"source": [
"This is an ideal residual plot.\n",
"It should look like a random \"stary-night sky\" centered around 0.\n",
"This implies that the model is not better or worse for any given X value."
]
},
{
"cell_type": "markdown",
"id": "6d4a62b5-c418-4222-9c87-90ecf7804f26",
"metadata": {},
"source": [
"Let's also test our assumption about a normal distribution of errors of the residuals."
]
},
{
"cell_type": "markdown",
"id": "ca391103-3c84-4fd6-9b7f-896577811ed5",
"metadata": {
"deletable": false,
"editable": false,
"tags": []
},
"source": [
"### Q3: Are the residuals normally distributed?"
]
},
{
"cell_type": "markdown",
"id": "41d6da6d-1e4c-496e-a059-85b262326bc9",
"metadata": {
"deletable": false,
"editable": false,
"tags": [
"remove_cell"
]
},
"source": [
"| | |\n",
"| --------------|----|\n",
"| Points | 5 |\n",
"| Public Checks | 5 |\n",
"\n",
"_Points:_ 5"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "0caa835c-e80d-4ec1-ba53-de99147c41d5",
"metadata": {
"tags": [
"otter_assign_solution_cell"
]
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAAGwCAYAAAAqkitTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABzl0lEQVR4nO3ddXhT1x/H8XeaCgVKcS/QHzacYVtxlw13GS6DocNluDNsY4MNGYzhUnS4M4rLho9BN6w4tFCgpen9/XFoSqjQtEnTtN/X8+ShuZZzu5EP59wjOk3TNIQQQohExMHWBRBCCCEsTcJNCCFEoiPhJoQQItGRcBNCCJHoSLgJIYRIdCTchBBCJDoSbkIIIRIdR1sXID6FhoZy9+5d3Nzc0Ol0ti6OEEIIM2iaxvPnz8maNSsODtHXzZJUuN29excPDw9bF0MIIUQc3Lp1i+zZs0d7TJIKNzc3N0D9YlKlSmXj0gghRALXtSusWQPffgvdutmsGPt8TrHr4EmCg16zaNYY43d5dJJUuIU1RaZKlUrCTQghPmTqVPD0hP794QPNgNay+/AJDh4/j0uyZNSsVJpFs4jRY6UkFW5CCCHMkCsXTJlis4/fffgE2/YdBeCzql58UuyjGJ8rvSWFEEKE0zTo0QP27rVpMd4PthoVyph1vtTchBBChPv1V/jpJ/D1hapVwQY9y+MabCA1NyGEEGFu34a+fSFVKliwwG6DDaTmJoQQAlRzZOfOEBAAixeDDYZNWSrYQGpuQgghABYuhF27oG5daN8+3j/eksEGEm5CCCE0TY1nS5MG5s+P9+ZISwcbSLOkEEIInQ62b4crVyBLlnj9aGsEG0jNTQghkrYnT9Sfjo5QuHC8frS1gg0k3IQQIum6fl3NQBLDgdoGAxw4ACtXqj8Nhth/tDWDDaRZUgghkqbQUOjYUfWOzJ37g4d7e6tRArdvh2/Lnh2++w4aNzbvo60dbCA1NyGESJq+/x4OH4YWLaBZs2gP9faGpk1Ngw3gzh213ds75h8bH8EGoNM0TbPKlROggIAA3N3d8ff3l4mThRBJ19WrULw4uLvDxYuQLl2UhxoMaorJ94MtjE6nanC+vqDXR/+xcQ02c77DpeYmhBBJicEAHTrA69fw88/RBhuoyl1UwQZqFMGtW+q46MRXjS2MPHMTQoikxGCAKlXgo4+gQYMPHu7nF7PLRndcfAcbSLgJIUTS4uwMkyapKlcMxHTYW1TH2SLYQJolhRAiaXjzRjVDhoSo9zGchaRCBfVMLarDdTo1DWWFChH32SrYwI7Cbd68eRQtWtS4iraXlxfbt2+3dbGEEMI+jB8P3bvDt9+adZper7r7Q8SAC3s/e3bEziS2DDawo3DLnj07U6ZM4dSpU5w6dYqqVavSoEEDLl68aOuiCSFEwnbsGEycCP/7H/TqZfbpjRvDunWQLZvp9uzZ1fb3x7nZOtjAzocCpE2blm+//ZbOnTvH6HgZCiCESHICA1W3/xs34NAhKFcu1pcyGFSvSD8/9YytQoX4rbGZ8x1ulx1KDAYDa9euJTAwEC8vryiPCwoKIigoyPg+ICAgPoonhBAJx6BB8M8/MHRonIINVJBVrhz1/oRQYwtjN82SAOfPnydlypS4uLjQvXt3NmzYQMGCBaM8fvLkybi7uxtfHjZYfE8IIWzm6lX46ScoVgzGjrXqRyWkYAM7a5YMDg7m5s2bPHv2jPXr17Nw4UIOHjwYZcBFVnPz8PCQZkkhRNKxdy9kymTVGf/jK9jMaZa0q3B7X/Xq1cmdOzc///xzjI6XZ25CiCRB09TLwfqNc/FZY0sy029pmmZSMxNCCAEsX65mIbl506ofk9CaIt9lNx1Khg8fTp06dfDw8OD58+esWrWKAwcOsGPHDlsXTQghEo6bN1V3/7Dam5Uk5GADOwq3+/fv07ZtW/z8/HB3d6do0aLs2LGDGjVq2LpoQgiRMISGqkmR/f1hyRLImdOy1w8MhObNOVXjc7b5vwESZrCBHYXbokWLbF0EIYRI2L7/Hvbvh0aNoF07y147MBDq1oUDByi6azfHW3clX5f2CTLYwI7CTQghRDQuXVJj2TJlUnNIxnDuyBh5+RLq1YMDBwAw6PWUKleaTxJosIGddygRQgjx1sOHkCYNLFoEGTJY7rphwbZ/PwCvXJLx13dz+aRbB8t9hhVIzU0IIRKDSpXUTCQpUljumi9fQv36sG8f8E6wfdnRcp9hJVJzE0IIe3bsGNy5o362ZLC9eqUWM927F4DXzi789d2PdhFsIDU3IYSwXw8eQMOGatLHf/4BV1fLXDcs2PbsAd4Ntk6WuX48kHATQgh7FBoK7dvD/ftqwTVLBlvDhrB7N/A22Gb/SJnuMVt9JaGQZkkhhLBH330HO3bA559D796Wuebr12oYwa5d6q2zC3/N+oEyPewr2EDCTQgh7M+ZMzBkiFpUbfFiy3T7f/1a1dh27lRvnV34a9YcynzVJe7XtgEJNyGEsDd9+0JICPz2m2W6/YfV2N4GW5CTM+dnfk+Zr7rG/do2Is/chBDC3qxZo4KoWrW4XysoCJo0UU2cqGD7a+b3lO7ZLe7XtiGpuQkhhL0ICVF/Zsmi5pCMq6AgaNwYtm1Tb52c+WvG95Tu9WXcr21jEm5CCGEPrl2D/PmNTYdxFlZjez/Yett/sIGEmxBCJHyvX0Pz5nDjhprxP66CgqBZM/j9d/XWyZnzM75LNMEGEm5CCJHw9e8P585Bjx4q5OIiOFgF25Yt6q2jE+enz6ZU7+5xL2cCIuEmhBAJ2erVMG8eFC8OM2fG7VrBwSoc3wm2v6bPplSfHnEvZwIj4SaEEAnVtWvQtSu4uakeksmSxf5awcHQogVs2qTeOjrx17ezKdX3KwsVNmGRcBNCiIQqZUooWRIWLIC8eWN/nTdvoGVL2LgReNsU+e0sSvVLnMEGMs5NCCESrixZ1Kz8DnGoh7x5o2psGzYAb4Nt2kxK9utpoUImTFJzE0KIhGbNGti+Xf0c12Br1co02KbOoOTXvSxQyIRNam5CCJGQnD+vBmi7uoKvL6RKFbvrvHkDrVvD+vXqrd6R81OmU7K/hSZZTuAk3IQQIqHw91czhrx6pWpvcQm2Nm1g3Tr1Vu+oamwD+liwsAmbNEsKIURCoGmqxvbPPzBiBNStG7vrhITAF1/A2rVAeI2tRBIKNpBwE0KIhGHaNNWbsUYNGDs2dtcIC7Y1a9RbvV4F28C+liunnZBwE0IIWwsNVb0iPTxgxQrQ682/RkgItG2rBn3zNtgmfZskgw3kmZsQQtieg4OawPj2bUif3vzzQ0KgXTtYtUq91es5P2kaHw/+2sIFtR9ScxNCCFsJDoaDB9XPjo6QK5f51zAYoH17WLkSgBAHPecnTuPjwf0tV047JOEmhBC20r8/VK5sHIdmtrBgW7ECCAu2qXw8JGkHG0i4CSGEbSxfDj/+CEWLQq1a5p9vMKjelcuXAyrYLkyYwsdDB1i2nHZKwk0IIeLbn39Ct27g7g7e3pA8uXnnGwzQsSMsWwa8Dbbxkyk+bKAVCmufpEOJEELEp0ePoEEDNVB79WrIndu88w0G6NwZfvtNvXVwUME2fJAVCmu/JNyEECI+zZ4N//0HEyaYP1DbYIAuXeDXX9VbBwfOj5Ngi4yEmxBCxKexYyF/fjXY2hyhoWpttyVLgLc1trGTKD5isOXLmAhIuAkhRHy4dUsN0tbr1WBrc4QF2+LFABh0DlwYM5Fi3wyJ8SUMBjh8GPz81Eo6FSrEbqy4vZAOJUIIYW3Hj6vFRqdNM//c0FDV+eSXX4C3wTZ2AsVGDo3xJby91RC6KlXUQgFVqqj33t7mF8deSLgJIYQ13b0LjRqpWURKlTLv3NBQ+PJLWLQICKuxTaDYyGExvoS3NzRtqiY/ededO2p7Yg04CTchhLCWoCBo0kS1Bc6YAVWrxvzc0FDo3h0WLgRUsF0cPZ5io2IebAYD9O2rFhx4X9i2fv3UcYmNhJsQQliDpsFXX8GxY2oWkT5mLDkTGqrOXbBAvdXpuDhqHEVHDzerCIcPR6yxvV/EW7fUcVEKDlaDzd92ZLEXEm5CCGENmzer52RlysBPP4FOF7PzQkOhZ0/4+Wf1VqfjwqhxFB0zwuwi+PnF4TiDQY2l++gj6NULJk5UZbMT0ltSCCGsoW5dFQjt20OyZDE7R9NUkPz0E/C2xjZyLEXHfBNtb8eo9mXJErOPNTlO02DTJvjmG7h4EVxc1ByYw4ap1QvshZaE+Pv7a4Dm7+9v66IIIRKrwMDYnRcaqmlffaVpKl40g06n/TVynKZpmrZ+vaZlz27cpYF6v3599PtCQtTPOp3p/rCXTqdpHh7qOKNjx9ROvV7TunbVtFu34v47sRBzvsN1mhbZo8bEKSAgAHd3d/z9/UmVKpWtiyOESGz8/aFcOahfX9XaYtoUqWnQu7d6tsXbGtuIMRQZP8rY2/H9b2qdLvKOImH7ANatU382bRr+MZEd0zj7CUiXLnwqsMmTVUeYfPliVv54Ys53uB3VMYUQIgELCYGWLVVT3ps35gVb377hwYaOiyNGU2T8qBj1dozqkqB6QjZooAIsWzbTY7Jnh52zLtF4WWP45BPV7Bhm2LAEF2zmkmduQghhCQMGwI4dUK8eTJkSs3M0TSXQnDmACrZLI0ZRZPxo4MO9HT906bCekI0bq5ALey7nqfuXMttG49B/meokUr68qjkmIhJuQggRVz/9BN9/r9ZmW748ZvNaaRp8/bU6j7fBNmwkhSeMMR4S096O0Qm7hl6v1kVl0yZo1kzVLosVg0mToE6dmNc07YSEmxBCxMW5c6qHY8aMqvu/m9uHz9E01QPxu++AsGD7hsKTxpocFtPejtHJkgV4/RqcnVVvx/LlVagNHKhCzp56QJrBbu5q8uTJlC5dGjc3NzJmzEjDhg25evWqrYslhEjqihZV3eY3boScOT98vKapJszZswEVbJeHjqDwpHERDq1QQT0bi02lSqcDj+waFf1Wq7Fqb9d/I106OHkSWrRItMEGdhRuBw8epGfPnhw7dozdu3cTEhJCzZo1CQwMtHXRhBBJUXCw+tPBAcaMAS+vD5+jaTBoEMyaBbwNtiHDKTR5vMlhBgMcOABr1qjFACBiwL37PrJ9pbUTnE1RHofWLeHePXj4MOb3lhhYfWCClTx48EADtIMHD8b4HBnnJoSwiOBgTatSRdMGDHhvkFg0QkM1beBAk4FmFwaPiHBYZOPW0qVTr3e3eXhEPs4tOze19cnbhG9o3lzTbtyw8C/ANsz5DrfbZ27+/v4ApE2bNspjgoKCCAoKMr4PCAiwermEEIlc2Cwi+/erJr6YtBlqGgwZAtOnGzddGjycQlMnAOEzjGzaZGytNPHkibrE2LFq5Zz3Zyh5tydkkX9OUXjUcihdWtUQy5WzwE3bH7scxK1pGg0aNODp06ccjmbGzzFjxjB27NgI22UQtxAi1mbPVr0cS5aEQ4cgefLoj9c0NW5s6lTjposDh/Hw80n4+cG1a2p+5A91+dfp1PM3X99IOmNu3AiffgqZM6vP27EDatVKdM/UzJqIw9rVSGv46quvtJw5c2q3PjAtzOvXrzV/f3/j69atW9IsKYSIvY0b1ZxVWbNq2u3bHz4+NFTThg41aU9cXWuoliFD5NNhxeS1f/871791S9MaNlQ7vvjCWnedYCTqZsnevXuzefNmDh06RPbs2aM91sXFBRcXl3gqmRAiUbt+HVq1ghQp4PffI0758T5NgxEjTAZ0T8kzhGE7J8epGH5+qHbMefNg+HB4/lwtrT1qVJyum9jYTbhpmkbv3r3ZsGEDBw4cwNPT09ZFEkIkJf/7n2peLFUKiheP/lhNg5Ej1RyNb03NPZhh/8Rw5pLoimG4BuXawvHj6pnfkiXQrl2iG4QdV3YTbj179mTFihVs2rQJNzc37t27B4C7uzuurq42Lp0QItEKClLLvuh0KrA+RNNULWriROOmqbkHMfT61GhO+rCwZ26lKrjCV5egbVu1uneGDHG6bmJlNx1KdFH8q2Tx4sV06NAhRteQVQGEEGYJDlZTUxUqpHoefmhaLU2D0aNhfPi4tWm5BzLk+rdxKkZxzuHGc/qtr0DjxoQv3JbEmPMdbjc1NzvJYCFEYqFp0K0b7NsHadPGrNlv7FiTYNvbdCBD1sU+2Bx5w1CmMIpxvEmXmeSfXQOSJclgM5fdhJsQQsSrCRPg119VF/ulSz/crX7sWPV6a3/zAbTcF/tgK8AldmZsh8eD02g5cuC0aFHMV/QW9jP9lhBCxJtly9Rzs//9T02G/KHn+uPGqSm43jrQ7GuqrZ3Oo0ex+XCNEal/5LxTCTwenIbOndGdPw/Vq8fmYkmW1NyEEOJdV69Cp06QJg1s2/bhDhvjx6vnbG9d6dmPtptmRruY6PuyZ1dzSObNC1kzGqg4Yhm6G6lg8WL4/PNY3kjSJuEmhBDvypdP9XT85BPInz/6YydONBlfdrVXP+41mcXtHz/8Me7u0LGjmjqrQgXQ37kJOXIAjpB3tVqiJnPmuN1LEibNkkIIARAYqDqR6HRq5v6KFaM/ftIktdTNW1d79iX/nFncuROzj/vxR9UBs3K5N+hHjYDcudV0XqBCToItTiTchBAiMBCqVoUePdTsHx8yebKafeStq91749d0Nl9/DT17xuwjs2UDbtxQ1bZJkyBXLjX7ibAIaZYUQiRtISFq4c4TJ6BIkQ/3ipwyRU179dbhRr1ovfV7bv8Us48LG4xd8c5KqP+lmj6rfXuYMydmq3iLGJFwE0IkXZoG3buruSI//xx++in68WzTpqkpuN463LAXFTfMifHHhV16TYt1OHzRGlKlghUr1JyVwqIk3IQQSdeYMbBoEZQpA6tXg2M0X4nffqvWZHvrjwZfUWVLzIMNIH16lZ+f1msAz7+EwYPVcANhcRJuQoikycdHjU/Lkwe2bo3+edf06SqI3vqjfg8qbIpBl8h31GULo2tdp1TjfoCTSjlhNdKhRAiRNHl5qedcO3ZEP5Zt5kzVe/KtHVV7UHHL3Bh/jJ4QJjGMLdSn+PqRxHJktzCT1NyEEEnLzZvg4aEegPXqFf2xs2bBgAHGtwvzdKfrvpgHWwYesIqWVGU/1x3zkctnnWqbFFYnNTchRNLx999QooTq8v8hs2dD//7Gtz/l7EbXf+bF+KNKcorTlKQq+1lLUy4uPom+eJFYFFrEhoSbECJpuHcPateGx4/VZMjR+e47+Ppr49ufc3Slx38/m/VxrVhJVu4ywf1b9OvWUP8LWWYrPkmzpBAi8Xv+XHX19/VVs/1Htwbk999Dv37Gt/NzdKX7zfkx+hg9IYTigM7BgTtfTeHPAs0Y9uWnH1wGTliehJsQInF78waaNoUzZ1Rz5DsDsCOYMwf69jW+XZCjM1/GMNjS85A1NGcv1Si26huaNXMCPlBDFFYj4SaESNw2bIBdu6BhQxVeUQ3S/vFH6NPH+HahRye63VwQo4/4mDNsoBE5uUnucpnJ0VQDYrC4qbAaCTchROLWvDmEhqrp96NqH5w716Tn5CKPjnS9tZCYBFQrVrCIzrgQxF+tp1B02eCYrdotrEo6lAghEqfDhzEuqtayZYQFRw0GOHAATnScZzLb8WKPDnS5tYgPB5vGeL5hBW0I0iXD55vtFF0+RIItgZBwE0IkPsuXqyVr3pkuK4zBoGbdSpMGVlX5iTJLvjLuW+zRnk63fiFmTYo6XHnNo3T5cLt4nPLja1ms+CLuJNyEEInL9u2qN2SaNBF6Ra5bpybeHzsWWj6fz0+Ej3dbkr0dnW4t5kPBlp6H6AgFIMeqqaS/fgJ9gXwWvgkRVxJuQojE4+hRaNJErWL9++9QsKBx1+DB0KwZvHoFXZnPfL407vs1ezs63l7Ch4KtBKc5R3FmphrD+vXQrIVeLaktEhzpUCKESBwuXlRj2d68gc2b1dyRb61erSb1B+jMQpNg+y37F3SIQbA1YR3LHNrhQhB9xqbHobEV7kFYjNTchBCJw86d8OwZLFkCdeoYN69dC61bq587sYiFdDXu+y1bG9rdXkr0waYxnImsoxmOyRzRbd2KQ78+0RwvEgKpuQkhEof+/aF6dSha1LjJ21uNBADoyC8seCfYlmVrTbs7vxFdsOkI5Vfa05Zl/OfgSfajW6BoIWvdgbAgqbkJIezX8+dq5v5Q1cHj3WAzGKBbN/VzBxazkC44oIYGrMjWirZ3lvGhpkgNB26TncOU58/5x9FLsNkNCTchhH0KCoLGjVWN7ddfI+xu00bNkdyeJSyiszHYVmZtSZs7y4ku2LJx29gjcgQT2fb1Hup3jmbNN5HgSLgJIeyPwQBt28KePSrg2rUz2b12repE0o5f+YVO7wRbC1rfXUF0wVaWI/xJMSYzjAwZYPUaBybPdLHm3QgrkHATQtgXTYPevVWCVamiBmy/M62WwQBdukBblrKYjsZgW5W1Oa3vriSyYHNyUhm5otFaDjpWI40+gPpDC+Hnp4YPCPsj4SaEsC9jx8K8eWrR0Y0bIVkyk90TJ0K9gGUsoYMx2FZnbU6ru6uILNhGjoRXLzXWl51Bqw3NcUzugsPOHRSY3E6WqrFj0ltSCGFfHBwgb141E0kq0wVADQa4M205v9LeGGxrsjSjZRTBNno0jBmtqdUAfvgBPDxg2zYoXDg+7kRYkdTchBD2ZdQotTZbxowRdl0dvYK5ge3Qv+0MsjZLE1r4rSayYEuVStXa0OkgbVooXhyOHZNgSyQk3IQQCd+OHWoR0bAu/ylTRjxmxQo+mtTWGGzrsjShud9aouo88tvsx+gxqDdjxsCRI5A1q+XLLmxCwk0IkbAdPqx6eyxcCFevmuwyGGDvXljVcBWGNm1x0FSwrc/cmOZ+a4gq2L6uc4X640rBwIFqg04HyZNb8y5EPJNnbkKIhOvMGahbF0JCYMsWgnMX4IeZcOgQ+PrClSvQMHg1K2hjrLF5Z25Es3tr0aL4t3t11yPMOFYPnj6FDBlU70tZgy3RkXATQiRMV65ArVpoL15w4ZvVdB1di+O1TQ9pxhqWvxNsGzI3oOm9dVEGWz02sy64BboQAyxbpkZ6i0RJwk0IkfA8fYpWowa6R4/4Ur+IBeOaRjikKWtZQWsc3z4325i5AU3ueUcZbJ1ZyM98ieacHDZthho1rHoLwrbiHG4Gg4Hz58+TM2dO0qRJY4kyCSGSuHV703DWrycvcWGBoVOE/U1Yx0pamQRb42iCDSAT93miS0/aA9ugTEmrlV0kDGZ3KOnXrx+LFi0CVLBVqlSJEiVK4OHhwYEDByxdPiFEUhIYyOBBGs2awSTDUGbzdYRDGrOeVbQ0BtvmTPWiDDYHDDi8PW4Swzm24Dx6CbYkwexwW7duHcWKFQNgy5Yt+Pr6cuXKFfr168eIESMsXkAhRBLx4gWPStTgf9N7GAPpfY3wZrWuxTvBVpeG9zdGGmwuvGY1LfiePoDGwIE66nWOODZOJE5mh9ujR4/InDkzANu2baNZs2bky5ePzp07c/78eYsXUAiRBAQFoTVsRPq/j+JCEFokXfgbsoE1uuY4airYtmT6nIb3N0UabO48Ywe1acp68nOVwX2CjCtxi6TB7HDLlCkTly5dwmAwsGPHDqpXrw7Ay5cv0ctEbEIIc4WEQKtW6PbuYT2N6cqCCIHVgI2s1TUzBtvWjFEHWxbucoiKVOYgK2nJ7r6/M/W7ZBGOE4mb2R1KOnbsSPPmzcmSJQs6nY4ab3scHT9+nI8++sjiBRRCJGKhoWoK/w0b+CN5DVq/XIHhva+l+mxina6pMdi2ZaxDgwebCCXiP6bzc4Wd1CInN/nRuR8Zl85gaguZqyIpMjvcxowZQ+HChbl16xbNmjXDxUWtc6TX6xk6dKjFCyiESMS2b4dff+WYgxe1Xm4gGNN10+qxOUKw1XuwJdJgc3KCrzx2kvPGTa51nUr3uYPQO8rg7KRKp2maFtuTX79+TbJk9lPdDwgIwN3dHX9/f1K9N5u4ECL+eXvD700W4U1jnmE6lKguW/DWNcZJCwFge4ba1H241Rhsej14eUHFilC1KlSuDHoHDU6dgtKl4/tWRDww5zvc7Pq6wWBg/PjxZMuWjZQpU3Ljxg0ARo4caRwiIIQQ0Tp0iOAgjfbt4Rc6Rwi2z9lqEmw7MtQyBtunn6oFuIOC1LSTE4utodqGXirYdDoJNgHEItwmTpzIkiVLmDZtGs7OzsbtRYoUYeHChRYt3PsOHTpEvXr1yJo1Kzqdjo0bN1r184QQVvDLL1CpErOSj+DFi4i7P+N3k2DbmaGmMdi+/RaOHoVq1d4uvj1/PrRsqabS8vWN3/sQCZrZ4bZ06VLmz59PmzZtTHpHFi1alCtXrli0cO8LDAykWLFi/PDDD1b9HCGElaxZQ2iXrjwgA4tD20XYXYdtbNA1wll7A8DODDX4/OHvGHDEwUGtKQqoyY6nTIEvv1Truh08CP/7XzzeiEjozO5QcufOHfLkyRNhe2hoKG/evLFIoaJSp04d6tSpE+Pjg4KCCAoKMr4PCAiwRrGEEDGxZQuhrdsQoLlRi51cxbR3dW22s1HX0Bhsu9JX5/OH24y9J/v3B2dnVLANGQLffgu5csHu3RDJd5JI2syuuRUqVIjDhw9H2L527Vo+/vhjixTKUiZPnoy7u7vx5eHhYesiCZE07dmD1rQprwwu1GE75zD9rqjFDpNg252+Op892m4Mtvr1CR+EvWuXelOoEPzxhwSbiJTZNbfRo0fTtm1b7ty5Q2hoKN7e3ly9epWlS5eydetWa5Qx1oYNG0b//v2N7wMCAiTghLCF48cJxYHP2coxvEx21WQnm3QNcNGCAdiTvhp13gm2fv1g1qx3TqhVC+bNg2bNIF26eLoBYXe0WNixY4dWsWJFLUWKFJqrq6tWrlw5befOnbG5VKwB2oYNG8w6x9/fXwM0f39/6xRKCBGluoVuaKpNMfxVg53aa52zccOe9FU1R4KN+5s1e3tyQICmzZqlaaGhtrwFYWPmfIfHasmbWrVqUatWLYuGrBAikfnrL1i1CiZMYMAgB7Ze9DTZXZ3dbHaoj0uoqrHtTVeF2o92EIITAGnTwsqVwOPH8NlncOKE2tguYkcUId4ni5UKISzvyhW1GOjDh+xxrcfMmaZNkdXYwxaHeiQLVR2+9qWrTO3HO43BBrBgAejv3YGaNeHSJejcGVq3jtfbEPYrRuGWJk0adLqYTWPz5MmTOBUoOi9evOCff/4xvvf19eXcuXOkTZuWHDlyWO1zhRBm8PWF6tXhwQPOdJ9PjVGmwVaVvWx1qGsMtv3pKlPr8S5jsLm6qmFrjYv+A+Wqw3//waBBMHWqGqQtRAzEKNxmz55t5WLEzKlTp6hSpYrxfVhnkfbt27NkyRIblUoIYXT7thphfecOIdNnU+6bria7q7CP3x0+NwbbgXSVqPVOjS1VKnj4EJwDHkHh8nD/vhrPNmRIvN+KsG9xmlvS3sjckkJY0fPnauqrq1e52HoipbyH8/p1+O7K7Ge7Qx1jsB1MV5Eaj3fzhvCZjtauhaZN374ZMwayZoVu3eLvHkSCZs53eIxqbgEBAcYLfWggtISGEElUypTQqhVX/gqm8IrhJrsqccA02NJWiBBs/ftD04KXIPQjcHBQ4SZELMX4mZufnx8ZM2YkderUkT5/0zQNnU6HwRD58vBCiETq1StIlgx0OgzfjKZcBtPGoIocNAm2Q2krUOPJHpNgK1sWZlTbBiWbQK9eyLLZIq5iFG779u0jbdq0AOzfv9+qBRJC2JHAQKhTB4oXh9mz2bfPgSdPw//xW4FD7HCojWuoap/8I205ajwxrbElSwaH+qyFhm3Uomy1a8f3XYhEKEbhVqlSJePPnp6eeHh4RKi9aZrGrVu3LFs6IUTC9fo1NGqk1p3x8MB7vUbzVuG7y3M4QrBVe7I3woKkhzotQd+6M7i5wbZtqhonRByZPbekp6cnDx8+jLD9yZMneHp6RnKGECLRefMGmjdXkxY3asTaur/SpLmesKcS5TnMTodaJA99BcAfacpGGmwLP/6R0nM7Qpo0sG+fBJuwGLPDLezZ2vtevHhhV6tyCyFiyWCAtm1hyxaoXZshOVbSvHV4I1A5/jAJNp80XlR/GjHYUqSAjnUfQpYscOgQlCgRr7chErcYz1ASNqZMp9MxcuRIkidPbtxnMBg4fvw4xYsXt3gBhRAJzIYNsHo1VK7M8I+8mTY7PLTKcoSd+lokN4QHW9Wn+wji3X/4qg4nS5fqcGg0Gvr0gvTp4/MORBIQ43A7e/YsoGpu58+fN1mF29nZmWLFijFw4EDLl1AIkbA0aQKLFhHcoBmT07saN3vhwy59TVIYXgJwNM2nEYJNRyjfO3xN7doaeRp9p2YckWATVhDjcAvrJdmxY0e+++47Gc8mRFKiaaoZsl490OkI/qIT78549ylH2aWvYQy2Y6k/ocrT/SbB5oCB+XSjc+gvcKuIGvQt3yPCSsx+5rZ48WIJNiGSEk2DYcOgQQP49lsGDAAXFzUzFsAnHGO3vjopjcFWhirPTIPNkTcspw2d+QXKlIEDByTYhFWZvSpAYGAgU6ZMYe/evTx48IDQ0FCT/Tdu3LBY4YQQCcCYMWrS4gIFqLmiA7v/DN9VhuPseSfYjqcuQ5VnB3hNeHOlC69ZSzPqsRUqVVI1QDe3eL4JkdSYHW5dunTh4MGDtG3blixZssR4tQAhhB2aOBHGjYO8eanluJfdf2Y07irDcfbqq5HSEAjAidSlqfJsv0mwATRjrQq22rVh/Xp4pzOaENZidrht376d33//nXLlylmjPEKIhOLbb+Gbb9A8/0fpgH2cvpbFuKs0J0yC7aR7KSo/O8ArIgZXQL0voLkOmjVT7ZlCxAOzwy1NmjTGqbiEEInYkyc8ccvBx777uEl24+ZSnDQJtlPuJankf9Ak2NLwhA4s4VaTr1m7Tgd8Ed+lF0mc2R1Kxo8fz6hRo3j58qU1yiOESCBK755EnudnuUlO47aSnGKfvipuhhcAnHIvESHY0vOQfVRlJgNY1cI73sstBMSi5jZjxgyuX79OpkyZyJUrF05OTib7z5w5Y7HCCSHi2S+/wOXL1L8yjVOndUB4K00JTrPPsSpuISrYTruXoJL/IV6SwnhMJu6xl2oU4hL/fNabPE0bx/cdCAHEItwaNmxohWIIIWzut9+gSxdeu6XnVMDXQFbjro85w37HKqQKeQ7AmVQfU/G9YMvGbfZSjfz8zd/1B5Jv4zQ1SFsIG5CVuIUQajqt1q3RUqemVMB+zoQUNe4KCzb3ELVQ8dlUxakQcJhAUhqPcecZpylJbm4QOvwbHCaMk2ATFmfxlbiFEInYhg3Qpg2kSsXg4rs5sy882Ipz1iTYzqUqFiHYADLmccezcXNwS4HDN9/Ea/GFiIzZ4WYwGJg1axZr1qzh5s2bBAcHm+x/8uSJxQonhLCyixehRQu05MlpmXona/aFz8xfjHMccKz8TrAVjRBsmbhHto8zcfqMDrRJUlsTCYbZvSXHjh3LzJkzad68Of7+/vTv35/GjRvj4ODAmDFjrFBEIYS1GPIXZG2eYZR/vp01/5Yxbi/Knxx0rPResP3BC8JnFinIRS44Fud09SFqgwSbSEDMDrfly5ezYMECBg4ciKOjI61atWLhwoWMGjWKY8eOWaOMQghLu36dNas1nF10NL88Fh/CJ2V4P9j+jCTYinGO466VSR9yH3LnjvfiC/EhZofbvXv3KFKkCAApU6bE398fgLp16/L7779btnRCCIt7s+8wL/MW5Z+WI3hvaliK8BcHHSuROkT9vf7LrQgVAg6bBFtJTnE2TVVSvn4MixfDl1/GZ/GFiBGzwy179uz4+fkBkCdPHnbt2gXAyZMncZGpdYRIsIKD4auPj/K62mfotRAOU8Fkf2HOmwTbebfClH/+B88J75X2KUf5w6UauoAAWLYMOnSIz1sQIsbMDrdGjRqxd+9eAPr27cvIkSPJmzcv7dq1o1OnThYvoBAi7gYMgLIup5h8rjbJeE0z1rKDOsb9hbjAIceKpAl5BsB5t0IRgg2gruNOXAwvYdUqaN06Pm9BCLPEeZzbsWPH8PHxIU+ePNSvX99S5bIKGecmkqLSpeHNqXPsoyqpCKAlq1hPU+P+QlzgkFNF0r55CsAFt0KUe36EANwjXGvtGo2mBS5C4cLxVn4hwsTrOLdPP/2UTz/9NK6XEUJYQcmScOYMjGYjqXnGFywzCbaCXDQJtospC1L++R8mwVaHbZTnD54NnEjTZjpAgk0kfGaH29KlS6Pd365du1gXRghhOfXqqWADGMtotlCPM5Q07i/AJQ45VTAJtnIvjuBPauMx9dnEWprh4OKEY/fOgPSMFPbB7GbJNGnSmLx/8+YNL1++xNnZmeTJkyfoQdzSLCmSAoMBmjeHq94XqM9mJjMMMB2D9hGX+cOpPOneqL+vl1IWoOwLH5Nga8YaVujaoE/pim7bNihfPh7vQoiIzPkON7tDydOnT01eL1684OrVq5QvX56VK1fGutBCiLjz9oYUKeCy9yX2UZVJjKAUp0yOyc8Vk2C7nPKjCDW2NroVrNK1wjFVCnS7d0uwCbtjdrhFJm/evEyZMoW+ffta4nJCiFjw9oYmTcAz6DL7qEpGHtKFBZyitPGYiMGWn7IvfHiGapHR6WBulzP8pmuLQ2p32LsXPvnEJvcjRFxYbOJkvV7P3bt3LXU5IYQZDAbo0gXycZV9VCUz9+nGzyyii/GYfFzlD6fypH/zGIArKfJT7p1ga9pU9fDXO3wM2UZCgwbw8cc2uR8h4srscNu8ebPJe03T8PPz44cffqBcuXJRnCWEsKaJE8Hp6X32U4Us3KM781hAN+P+fFzlD+fypA9WwXY1RT7KBvrwlLQULAhnz4LzX6fAoaSqvsk8scLOxXmxUp1OR4YMGahatSozZsywVLmEEDFkMMCsWfCMjKykFTf4Hz/T3bg/L3/zh3N5MgQ/AsKDzZAqLS/vgasrsGgRdO0KEybA8OE2uhMhLMfscAt9fzI6IYRNdW38mGfP0gI6BmL6D8w8XDMJtr9T5KVsoA/PHNIR/AT0emD+fDU/ZIYMkMAnYhAipizSoUQIYRsNitxg7ObijGdkhH25+Yc/nMuRMfghANdS5KFsoA9PSMfKlW+Dbd48FWyZMsGBAzLziEg0zK659e/fP8bHzpw509zLCyFiIDgYymTwZVNAFTy4zWPSmezPzT8ccS5LprBgS54Hr8CjPCY9DRqocXD8+CP06gWZM8P+/fDRRza4EyGsw+xwO3v2LGfOnCEkJIT8+fMD8Pfff6PX6ylRInwVX50sXCiEVXz9NWyY/S8HqEJObjKA6czma+P+/3GdI87lTIKt7EsfHpOe/v3B+Gj8+nXIkkUF29u/y0IkFmaHW7169XBzc+PXX381zlby9OlTOnbsSIUKFRgwYIDFCymEUPLkgTfX/+MAVcjFfwxiGjMJ/zvnyQ2OuJQjU9ADAP5JnpuyL314RAZq1Xon2EC9GTJENUkKkciY/cxtxowZTJ482WQarjRp0jBhwgTpLSmEFdWvrypb7ViKJ/8ylMlMZ5Bxvyc38HEpS+ag+wBcT/4/Y7AB1K6NCrQRI0DTVJd/CTaRSJkdbgEBAdy/fz/C9gcPHvD8+XOLFEoIYcrfH7ZsUT9P4BtqspOpDDXuz4UvR1zKGYPtRnJPvF4e5SEZAdV5pNfLaTBwIPz2Gzx9Gu/3IER8itVipR07dmTdunXcvn2b27dvs27dOjp37kzjxo2tUUYhkiyDQc0cUjD1HXox5+1WHbupaTwmJ/9yxKUcWYLuAXDDNZdJsAFsKTsZxxFDIGdOOHgQ0qaNz9sQIv5pZgoMDNR69Oihubi4aA4ODpqDg4Pm7Oys9ejRQ3vx4oW5l4tX/v7+GqD5+/vbuihCfND69Zqm12taFu5oV8mraaBVZp+m2hTVKye+2h2XLMYNN1xzaZnwM+7X6TRte/nx6k2uXJrm62vr2xIi1sz5Do/1StyBgYFcv34dTdPIkycPKVKksGzqWoEseSPsRdgkyJnx4wCVyc/fjGMkoxlL2PI1OfiPoy5eZA3yA8DXNRder45yn8y4uKjJRvrm34FT/Trg6anGseXIYbubEiKOzPkOj3W42SMJN2EPDAbw8IBQv3vspwoFuMIERjCS8YQFmwc3OZrMi2yv1WTl/7rmxOvVUe6RBU9PuHHj7cU0TU082b69uqgQdsyq67nZ2ty5c/H09CRZsmSULFmSw4cP27pIQljU4cPw0u+ZMdgmMzTaYPvPNYcx2Pr2hRvXNdi3T11Mp4NvvpFgE0mOXYXb6tWr6devHyNGjODs2bNUqFCBOnXqcPPmTVsXTQiL6dQJ/HF/u9joMIYzibBgy84tfJKVjTTYnj+H2bM01dW/WjX44Qcb3oUQtmVXzZKffPIJJUqUYN68ecZtBQoUoGHDhkyePPmD50uzpEjIXr2CAtmf898Tt7dbwv5qqmDLxm2OJvPC4/VtAG66evDpq2P4kVXNPDJdUzP6T5miptLat0/NQCJEIpEomyWDg4M5ffo0NWvWNNles2ZNfHx8Ij0nKCiIgIAAk5cQCVH9+pAn+R12PSnJN4x/u1VHlMGWLDter47iR1ZKl34bbCNGhAfb/v0SbCJJi9H0W+8vUBqd+lZaMuPRo0cYDAYyvTejQqZMmbh3716k50yePJmxY8dapTxCWEJY5xEHv9scoAp5+QdHQkyOycodfN4JtlvJslP29VHuko2vv4aZMzQYORImTw4PtsyZbXE7QiQYMQq3yBYofbc1891Jkg0Gg2VKFoX3J2TWNC3KSZqHDRtmsopBQEAAHvJgXSQQK1dC69bqOdp+qpCH64xmDOMYbTwmK3c46upFjlfhweb1+ih3yM7Ll28XGtVQM47kz6+aIiXYhIhZs2RoaKjxtWvXLooXL8727dt59uwZ/v7+bNu2jRIlSrBjxw6rFTR9+vTo9foItbQHDx5EqM2FcXFxIVWqVCYvIRKCMmVUsHlwkwNUJg/XGcVYk2DLwt23wXYLgNvJslH2tQ93yM7q1W+DDVSPyB9+gKNHpSlSiLfMXhWgX79+/PTTT5QvX964rVatWiRPnpxu3bpx+fJlixYwjLOzMyVLlmT37t00atTIuH337t00aNDAKp8phDU0aAAnT6qfO/ELubnBN4xnIt8Yj4ks2LxeH+U2Hnh5vV2PbcwYcHCAUaNUwL0zmbkQSZ3Z4Xb9+nXc3d0jbHd3d+fff/+1RJmi1L9/f9q2bUupUqXw8vJi/vz53Lx5k+7du1v1c4WwlFev4N1H2OMYxXE+YQd1jNsy44ePa1lyvlJDXO4ky0rZ1z7cxgNHRzUOjrFj1StvXrXAm5sbQoh3mDu3V4UKFbSqVatqd+/eNW7z8/PTqlevrlWsWNHcy5ntxx9/1HLmzKk5OztrJUqU0A4ePBjjc2VuSWFrOXOq+SB7MsdkjsiwVyb8tBuuuYwb7rhk0XLwr3H/+vWapo0bp97kyaNpt2/b+paEiDdWnVvyn3/+oVGjRly9epUcb+epu3nzJvny5WPjxo3kyZPHChFsGTLOTdhSvXpwYasvB6hMTm7ihQ/H8DLuz8Q9jrp64fnqXwDuumTBK+goN8mJoyOsXg2NL01QPSNz51ZzRWbPbpubEcIGzPkON7tZMk+ePPz111/s3r2bK1euoGkaBQsWpHr16lH2WhQiqWvQAC5uvcFBKpODWwximkmwZeQ+Pu8FW9kgH26Sk6ZNYdUq0O/aroLtf/9T3f0l2ISIUpxmKHn9+jUuLi52E2pScxO2sHo1DG95nf1UIQe3GMi3zGCgcX9G7nM0uRf/e+kLgJ9LZryCjvImay58fcHZ+e2BoaEwbhx07ixzRYokyaozlISGhjJ+/HiyZctGypQp8fVVfyFHjhzJokWLYldiIRIpgwGGdbzHgbc1tv7MMAm2DDwwCbZ7LpkoG+RD0Xq5uHPnbbAdPaoOdnBQPSQl2IT4ILPDbcKECSxZsoRp06bhbPwnJRQpUoSFCxdatHBC2LsDB+DfVxnZTh36MYtZhE8qEFWwTVzuGd6jcupUKFtWJkEWwkxmh9vSpUuZP38+bdq0Qa/XG7cXLVqUK1euWLRwQti1p0/55hvQcOBLfuY7+hl3pechPsnLkvulWnjtvnNGygUdoWTT/9G69duDvv0Whg6FnDmhbt34L78QdszscLtz506kPSJDQ0N58+aNRQolhN27epVXuQtR8djUtxvCn0uHBVuel9cBFWxlg324myw3q1a9PWj6dBg8WK2cfeAA5MoVn6UXwu6ZHW6FChWKdIHQtWvX8vHHH1ukUELYtStX0CpXxvWpHy9IabIrHY/wSV6WvC//AeC+cwbKBR/hBrlZvhz0emDmTBg0SIJNiDgweyjA6NGjadu2LXfu3CE0NBRvb2+uXr3K0qVL2bp1qzXKKIT9uHgRqlVDd/8+X/Ej8/jKuCstjzmawou8gSrYHjhnoHzwEa6Th9GjoXFj1Fjty5dVp5H9+8HT00Y3IoR9i9VQgJ07dzJp0iROnz5NaGgoJUqUYNSoURHWWktoZCiAsKo//4Tq1eHRI77kJ+bzpXFXWLDlC7wGqGArF3yEf8hLsmTw4sXbWhuoLv8PHsjs/kK8x2qDuENCQpg4cSKdOnXi4MGDcSqkEInOr7+iPX5MJ35hCR2Nm9PyGJ8UZY3B9tA5PeWD/+Af8gIwZAjof/weXr9Wz9kcHCTYhIgjs2tuKVOm5MKFC+Syw+cAUnMT1mR4E0o1Vx8OGsJXzEjDE3xSlOWjwKtAeLD9TX5ALVvzYuqPOPTpBdmywYULkDq1LYovRIJn1UHc1atX58CBA7EtmxCJy5EjMHs2AOUrOkQbbI+c0pkEG8DhtvNVsGXJop6xSbAJYRFmdyipU6cOw4YN48KFC5QsWZIUKVKY7K9fv77FCidEgnbwIHz+OQQH03VzPY4dy23clZqnHElZlo9eqGB77JSW8m9Mg21u6cWUnP8lZMqkVtDOmzfeb0GIxMrsZkkHh6grezqdDoPBEOdCWYs0SwqL2bMH6tcHg4FxxdYz+mT4IOvUPMUnZVkKvFCTGoQF2xUKGI+p6vwHe95URJcuneruX6hQfN+BEHbHqqsChIaGxrpgQiQKO3ZAw4ag0zGq+GbGn6hl3OXOM46kLPdOsKWhwpvDJsEG0GOpF7rj/aB9ewk2IazA7HB71+vXr0mWLJmlyiJEwnf2rFq/Rq9nZPEtTDhazbgrLNgKvrgMhAXbH1ymoPGY/3GdxgNz07SFHlrMjPfiC5FUmN2hxGAwmKwKcOOGmhtPVgUQSUKxYtC5M7sH7DAJtlT484dbeQq9uATAE6c0VHxz2CTY6rGZK7oCfJttdnyXWogkx+xwmzhxoqwKIJKeq6pjCA4ODHCdS80JFY27VLCVo/Dzi0BYsB3iEuHNjXXYxjqa4pjCBcqUideiC5EUyaoAQnzIsmVQsCDMnUvDhmrqxzBuBPCHW3mKvA22p46pqfjmEBcpbDymOrvxpjEOLk7otm1TS9gIIaxKVgUQIjq//ALt2kHq1OwK+JRNm8J3uRHAEbdyFHl+AYBnju5UDDENtsrsZzP10TvqcNy+FSpUiO87ECJJklUBhIjKzz9D586QPj2GPfupO6qEcVd4jc002C5QxOQSLViNs5OG07bNUKVKvBZfiKRMVgUQIjJz5kCfPmqOx717Gb+mIGENEyl5zuFUFSgacB5QwVYp5CDnKRrhMulW/Yj+ox6qI4oQIt6YXXOrV68eq1evZtu2beh0OkaNGsXly5fZsmULNWrUsEYZhYhfmganTqm5Hg8exJC/oPE5mwq28hQL+AsAf8dUVA45wF+Eh1dpTvAVP7J2LTRroZdgE8IGYrXkjb2SGUpEjBkMcO8eZMvGgQOqRTGsxlY84E8gPNjOEd4c/zFn2Es13B2e43DlskypJYQFWXXiZCESJU2DESOMkyCj16uaGzBgAKTgBYdSVYw22IryJ7upQSoCcFixXIJNCBuK0TO3NGnSoNPpYnTBJ0+exKlAQsQ7TYN+/eD77+Gjj+DLL9VaNEDdunD1jAq2jwPOASrYqoTsNwm2glxkD9VJw1McflsKLVrY4EaEEGFiFG6zw/41Czx+/JgJEyZQq1YtvLy8ADh69Cg7d+5k5MiRVimkEFZjMED37rBwIRQtCrt3G4OtdGm4dCqQw6kqUiLgLAABjm5UDdnHWcJ7Tnpwk71UIwOP1NCBL76wya0IIcKZ/cytSZMmVKlShV69epls/+GHH9izZw8bN260ZPksSp65CRMhIWri4hUrVJLt2AFp0wLQvz/8PCuQg+4VKeV/BggPttOUMrmMnhAW0ZkCXcpTZkHXeL8NIZIKc77DY7US97lz5yIM5L527Roff/wxL168ML/E8UTCTZj48Ufo1UsNrN66FVKlwmCAXbugyWcvOeRekVL+pwF4rk9JFcN+k2BLTiAvCVvPUGP/fh2VK8f/bQiRVFi1Q0m6dOnYsGFDhO0bN24kXbp05l5OCNv58kuYMgW2b4dUqVizBlKlihhsL/QpqGowrbFl4zbnKUJfZgOQPbtOJh8RIgExexD32LFj6dy5MwcOHDA+czt27Bg7duyQiZNFwvf8uQqz5s3B0RGGDAHUKjabN4MrLznoXilCsJ2itPESmbjHXqrxP3xx5RUA332nOlgKIRIGs8OtQ4cOFChQgO+//x5vb280TaNgwYIcOXKETz75xBplFMIynj2DOnXg2DFInRpq1gTUgtpbtkAyXnEgdWVKPzsFqGCrZtjLScJn8U/HI3ZTg/z8zXi+YQrDWLsWGje2wf0IIaJkVri9efOGbt26MXLkSJYvX26tMglheQ8fqjA7dw46dIBqai22/v1Ng63Ms5MAvNAnp7phDycI/webO8/YSS2KcIEZ9GcU41izBpo2tcH9CCGiZdYzNycnp0iftwmRoN29C5Urq2D76itYtAj0elatglmzVLDtT12ZT56dAFSw1TDs4TifmlymL99RkjPMozuDmM769TqaNYv/2xFCfJjZHUoaNWqUoLv7C2Hi/n2oWBEuXYJBg+CHH8DBgYEDoVUrcOE1+1NX4dO3wRaoT05Nw26O4RXhUhP4hk4soic/smOnTpoihUjAzH7mlidPHsaPH4+Pjw8lS5YkRYoUJvv79OljscIJEWfp00OpUmpNtpEjQadj8GCYMeNtsKWpwqdPjwMq2GoYdnOU8MVEnQmiBrv5nbqEomcxnUiXztiqKYRIoMwe5+bp6Rn1xXQ6bty4EedCWYuMc0tCnj6FNGnUz6Gh4OCAwaA6Starp4JtX5qqlH16FICXDq7UCN2ND+WMl3DkDWtpRkM20YCNbKYBAOvXSwcSIWzBnO9ws2tuvr6+sS6YEPHi9GmoXRvGjYMePcDBAW9vNRnJixeqNrb3vWCrGbrLJNgcMPAbbWnIJnZSkx3UJmVK+PVXCTYh7IHZ4Rbm0aNH6HQ6GbgtEpZDh9Rsx4GBkDw5AOvWYez4ERZs5d4JtlqhOzlCeeMldISykC60ZDX7qcy3XhvYOtaFqlVlLJsQ9sKsDiXPnj2jZ8+epE+fnkyZMpExY0bSp09Pr169ePbsmZWKKEQM/f471KoFQUGwdi20b68WDH032NJWo/xTHwBeOSSjdugO/uDdqUU0fqAXHVmCD14cHbqZPT7JqVFDgk0IexLjmtuTJ0/w8vLizp07tGnThgIFCqBpGpcvX2bJkiXs3bsXHx8f0oQ95xAiPq1aBW3bgouLGrhWvTre3moiElDBtidtdco/OQKEB9thKppcRo+BNDzlNCX4Is02rk1wi+87EUJYQIzDbdy4cTg7O3P9+nUyZcoUYV/NmjUZN24cs2bNsnghhfig33+HlClVj5FPP8VggC5d1C4ngtmdtgYVnvwBqGCrE7qdQ1SKcBkDjnzBMtx4zi8LU0ttTQg7FeNmyY0bNzJ9+vQIwQaQOXNmpk2bJgO8he388gucOAGfqoHXFSuqDpMq2KpT8clhAF47uFAndDsHqWxy+hCm0J15AKRJp+eX9aml44gQdizGNTc/Pz8KFSoU5f7ChQtz7949ixRKiA/SNBg6FHLkgJ49wckJ8uYFVFd/H5+3wZauBpUehwfbZ6HbIgRbH75jCsO4gScvGrVjydoUUmMTws7FuOaWPn16/v333yj3+/r6Ss9JET/CVs+eNg3mzVMdSN6qV08tzebIG3alq0mlx4cAFWyfh/7OfqqaXKor8/mOftwmG1Oq7+U3bwk2IRKDGIdb7dq1GTFiBMHBwRH2BQUFMXLkSGrXrm3Rwr1r4sSJlC1bluTJk5M6dWqrfY5I4IKDoU0bmD8fSpaEAwfAxQWDAby8TIOt8uODQHiw7cN0WpE2LOMnunOPTPw5cx/zd0c9QYEQwr7EeIaS27dvU6pUKVxcXOjZsycfffQRAJcuXWLu3LkEBQVx6tQpPDw8rFLQ0aNHkzp1am7fvs2iRYtiNfRAZiixcy9fqn7927ZBpUpqAbZUqVi3Ts0TGRKigm1nuppUfXwAUMFWN3Qre6lucqmyHOEglQh0dCflqYPoixW2wQ0JIcxh1ne4ZoYbN25otWvX1hwcHDSdTqfpdDrNwcFBq1Wrlnbt2jVzLhVrixcv1tzd3WN1rr+/vwZo/v7+li2UiB+TJ2saaFrdupr28qWmaZo2cKDaBJrmSLC2J10V44bXOmetBjuN+999ORKsLXHpqoUcO2njmxJCxJQ53+FmzVDi6enJ9u3befr0KdeuXQPURMpp06aNZQ5bV1BQEEHvPI8JCAiwYWlEnA0YAK6uatkaJycGDlQTIIOqse1IX5tqj/YDEKRzpp62hd3UNLlEWh7zhHSE4ITbivnoZX1dIRIls5e8AUiTJg1lypShTJkyCTbYACZPnoy7u7vxZa0mU2FFt27B0qXqZycn6NsXnJxYuzY82PSEsD19Hao92geoYKuvbY4QbMU5yz/koY/jXJn8WIhELlbhZiljxoxBp9NF+zp16lSsrz9s2DD8/f2Nr1u3blmw9MLqLl+GsmXVjMdnzhg3vztAOyzYqj/aC0CwzokG2iZ2UcvkUvm5wi5qkooAZi7LIMEmRCIX64mTLaFXr160bNky2mNy5coV6+u7uLjg4uIS6/OFDR07Bp9/Dk+ewMyZUKKEcdf48RAQoILt9wyfUePhHiA82HZi2ms3J/+yh+pk4JFahbuFLJ8tRGJn03BLnz496dOnt2URREK0fTs0aQJv3sBvv8EXXxh3eXvD2LFhwfY5tR7uBlSwNdQ2soM6JpfKjB97qE527sCsWdCpU7zeihDCNmwabua4efMmT5484ebNmxgMBs6dOweoDi0pU6a0beGE5fj4QP364OysuvrXCQ8rgwH69FHBtjVDXWo93AXAG50jjbQNbOezCJcbwAzycF0lYr9+8XUXQggbs5twGzVqFL/++qvx/ccffwzA/v37qVy5so1KJSyuTBk1u3+3bsZ5IsNMmAB+dwxszVCP2g93AuHBto3PI73cg36ToUxJ+EDztxAicYnxIO7EQAZxJ1CaBocPq9mOozBoEMycbmBLxrp89mAHoIKtsebNVuqZHJuMV9Rw2MfqF5/j6mrVkgsh4pE53+E27S0pBCEh0LmzmnFk3bpIDxkwICzY6pkEWxNtfYRgcyKYdTRlc2hdXA9st3rxhRAJk900S4pE6OVL1Vy4ZYtqgqxSxWR3cDDUrAmHDxrYnLE+nz1QYRWi09NUW8cW6psc74CB32jL52xD++xzdNVNp9wSQiQdUnMTtvH0qUquLVtUp5E9e+CdVSUGD1aLah8+aGBTxgZ8/mAbEB5sm2nw3gU1fuZLWrCGh4Uqo1u3Vg36FkIkSRJuIv49eaKerx05orr5b9oEKVIYdw8eDN9+CzpC2ZCpIXUf/A6oYGumrWUTDd+7oMYMBtCFRdzJVoYMRzcjD9uESNqkWVLEP3d3yJ9f1dy+/RYcwv+NFRwM06erYNuYqQH1728FIAQ9zbU1bKRRhMvpMZCLf7mkL0z+s9vBzS3ebkUIkTBJuIn4c/OmWjlbr4dVq8DR9H8/g0GNBEALZUOmRibB1oLVbCDyObMMONKcNXgv8KdghoQ716kQIv5Is6SIH6tWQd688Msv6v17webtrSp0f/0ZinfmxjS4vxlQwdaSVXjTJMIlW7Ocjqjr9R/kSP2OshK8EEKRmpuwLk1T0/cPGgSpU0OePBEO8fZWs23pCGV95sY0vLcJUMHWipWsp2mEcz7jd36lPc9ITf1fGtKwo9TYhBDhJNyE9RgM8PXXMGeOao7cvh0KFjQ5JDhYTUaiI5R1mZvQ6J1ga8Ny1hFxkuPyHGYdTQnRJyPNod9pWFaCTQhhSpolhXUEBUGzZirYihWDo0cjBNu6dZAmDTx5HMrazM1ofG8jAAYcaMNy1tAiwmWL8idbqIeTg4Fk27zRl5XVRoUQEUm4CetwclID1WrUgEOHIGtWk92DBqnse/lSY02W5jS55w2oYPuCZZEGWw7+Yye1cNcF4LhymeptKYQQkZBmSWFZT5+q6piDAyxZov58bzD1wIFhq2hrrM3SjKZ+6wEVbG35jVW0ivTS98hM8KcV0bWvCs2bW/c+hBB2TWpuwnJOnYKPPoKfflLvXVwiBNvq1eHBtjpLc5Nga8dSVtI6wmUdMADQZ6ALOXxWQ/fu1rwLIUQiIOEmLGPjRjX58ePHahxbJNauhdatQQVbC5r7qYmSDTjQnl9ZQZsI57jykv1UYU2NBXz7LaDTWe0WhBCJh4SbiJuwrv6NG6smyM2boWvXCIetW6daEkNDNVZlbUlzv7UAhKKjA0tYzhcRznHkDetoSkUO0yzLH+qzhBAiBuSZm4g9gwF69oSffwYPD9i6FYoWjXDY6tXQqhWAxoqsrWhxdw0QHmzLaBvhHB2hLKEDn7Ed7fO66BYulFqbECLGpOYmYs/BAV69gpIl4fjxSINt8GC1qo2maazI2ppWd1cDKtg6spjfaBfJhTW+oy9tWMGjAhXQrV0jM/wLIcwiNTdhvseP1fI0Oh3Mn68WHH1nVv8wa9eqeZFBY3m2NrS6swpQwdaJX1hK+0gv34bl9OYHnuUqRnofmeFfCGE+qbkJ84QNxp4zR713cYk02AwG6NIFQGNZti9ofWcloIKtCwv5lQ6RXv7TT6HT9uaEfj2A1Md2qim7hBDCTFJzEzG3ahV06KBqah+oTU2cCAEBGr9l+4I2d1YYt3dhIYvpFOF4nQ42/HiXBj2yAs5Qe7qFCy+ESEqk5iY+LDQUxoxRvUKSJYMdO8KqZZEyGOC72RpLs7fjC5NgWxBpsAEsbruPBv1zq2ZOIYSII6m5iegFB6seIRs2QO7cqqv/e3NEvm/iBI1ZKdrT9vYy47auzGcRkQdiJfdztNvQUHX1/+gjS5ZeCJFESc1NRM/JCdKmhWrV4MSJDwab93qNnAs70O72b8Zt3fiZhUQc+waQC1926OqgCwyEFSugYkWLFl8IkTRJzU1E7vJlVYvS6WDuXNXt3zHq/10MBti7R+NF/460v73UuP1LfmIB3SI9xyPZQ/5KU4tkfvdg3jw1EFwIISxAam4ionnz1Ji12bPVe2fnKIPNYIBx4yC1u8adrp1od/NX477uzGM+X0Z6npsb+H71LW5+12DkSJkvUghhUVJzE+GCg6FvXzXxccaMUKZMtIevWwedO6tekYs8OtPx1hLjvq/4kZ+JOrCWLAF9vYlQpCC0j3y8mxBCxJbU3ITy8KFae+2nn6BECTXDf7lyUR4+eLBajy0gQGOBRxc63Vps3NeTH5jHV1GcqbGoy1HVAunkpIYWyLRaQggLk3AT8OQJlC6tFhVt2RIOH1ZzRUZh9eqwmUdgfo6udLn1i3FfL+Ywl55Rnjs72TA6LSyrLiKEEFYizZJC9Yb8/HPInh2GDo22JhW+bI0Ktq43Fxn39eZ7fqRXlOf24Tv6vp4KBQqoWqIQQliJhFtS9eoV/PorfPmlCrMffvhg82DYsjUAP+foRtebC437+vAdP9A7ynObs5pZfI2WNSu6HTtUoAohhJVIuCVF169D06Zw7pyaF7Jt2w8G2+rV4TW2eTm/pNt/C4z7+jKbOfSJ8twq7OM32hKSPBXOO3ZAjhyWuAshhIiSPHNLarZsUUvUnDun1mILq4pFI2zZmtBQmJezO93/C58i62tm8j19oz2/h/Mv6J0ccN6+GYoUiesdCCHEB0m4JRUhITB8ONSvr7r8L1ummiJdXKI97d3OI3Nz9qD7fz8b9/VnBrP5OspzU6aEsWOhccAS9D5/yOwjQoh4I82SScXevTB5MuTNC+vXx6gG9W7nkR9yfUWPf38y7hvAdGbRP9LzPv0UJg/1p0LoAfSNGgCOUKqUJe5CCCFiRGpuiV1oqPqzVi1YuFCNX/tAsIXNOtK8uTp9Tq6e9Px3nnH/QL5lJgMinOfgoFbFOXowmMpzmqBv3BD27LHk3QghRIxIuCVWb97AN9+okdaaprZ17gypUkV7mrc35MwJo0er93Ny9aLXv3ON+wczlRkMjPTcVaugRXMNunZVNcUmTaBqVYvcjhBCmEOaJRMjX1/VnnjsmFqm5sEDyJTpg6d5e6tOlGFZ+J1nb3r5/mjcP4QpfMvgCOc5OKhnc02bAqNGw9KlULYs/Pab2imEEPFMvnkSm5UroXhxFWzt2sHZszEKNoNBTSsZFmyzPfvQx/cH4/6hTGYaQyI9d8WKt8G2aBGMH6+e623a9MHVuoUQwlok3BKTvn1VjU3TYPlyNUjbzS1Gpx4+DLdvq59nefalr+8c477hTGQqQyM9b9AgaNEC9Zm7dkGGDLB9O6RPH9e7EUKIWJNmycTkk0/UTP4rV8L//mfWqX5+6s9Znv3o5/u9cfsIJjCZ4RGOd3BQNbYWLd5u0OnUhv/+M/uzhRDC0qTmZs9CQmDGDHj8WL1v3Rp8fGIVLlmywMz/fU0/3++M275hPJMYEenxq1a9DbabN1WoAej1EmxCiARBws1eXb6sOm0MHAhjxoRv1+tjdbnM677m6xuzje9HMo6JfBPhuOzZ1TC5Zs2AZ8/gs8+gTRs4cSJWnyuEENYg4WZvDAaYPh0+/hhOnoSOHWHChDhd8kqfAXz042zj+9GMYQIjIxw3diz8+y9qLbbgYPXDxYvQv/8HFzYVQoj4JM/c7Imvr5rk+MgRyJwZFiyAunXjdMn9LQZSZc1M4/sxjGYco02OSZcO5s9/G2qgOo906QL796tukmHzcwkhRAIhNTd7otOprv2tWsGFC3EKNoMBNn82iCprZhi3jWUUYxkT4VhXV2jQ4J0NEyeqMWxeXmpMm4xlE0IkMFJzS+iOHFFzYFWoALlyqVDz9IzTJb294faoQfS5ON24bTzfMCaSYAM1RODwYahcGVWWsDLIWDYhRAJlF//k/vfff+ncuTOenp64urqSO3duRo8eTXBwsK2LZj3PnkGPHlC+PHTqpHpGQpyCLWzOyGuDB5sE2wRGMIpxQNRruoUNFTCOAfDxUWPahBAiAbKLcLty5QqhoaH8/PPPXLx4kVmzZvHTTz8xfHjE8Vd2T9PUktcFC8JPP0HRomp5Gse4VbLD5ox0/m0oQ66HPyObyHBGMp7ogg0gl+4/NSgcVMBlzhyn8gghhFVpdmratGmap6dntMe8fv1a8/f3N75u3bqlAZq/v388ldJMDx9qWqVKmgaa5uqqaVOnalpwcJwvu369pul0mjYpzxB17bevSQzVIPTdTZG+CmTz10ILF1ZvfHzifp9CCBEL/v7+Mf4Ot4uaW2T8/f1JmzZttMdMnjwZd3d348vDwyOeShdLadNCYKDqlnjhgloC28kpTpcMmzNyQu5hDPtnqnH7FIYwnEl8qMbmSAj7MrZEd+EC9OunOpEIIUQCp9O0sKly7cf169cpUaIEM2bMoEuXLlEeFxQURFBQkPF9QEAAHh4e+Pv7k+oDS7/Ei5cv1QwjgYEwZYraFhgIKVJY7CMOHIAjXYcz4p/Jxm1TGcxQpvChYEuXDo590oc82+aonpkbN8Z6kLgQQsRVQEAA7u7uMfsOt3o9MhqjR4/WgGhfJ0+eNDnnzp07Wp48ebTOnTub/XnmVGmtymDQtGXLNC17dtXU5+GhaYGBVvmona2Gm7QxTmXQB5si06bVtLFjNc3w/Q9qQ9GimhYQYJXyCSFETJnzHW7ToQC9evWiZcuW0R6TK1cu4893796lSpUqeHl5MX/+fCuXzkqOHlXNeydOQLJkakHRIUMgeXKLf9TFod9Qc+Uk4/vpDGAIU4muxjZ2LIwYAXoHDTqeVB1Htm6N8eoCQgiRENhNs+SdO3eoUqUKJUuWZNmyZehj0TxmVpXWGh49UpMzBgWpSY4nT4YcOazyUReHjaTAlIk4oP7zzqQ/A5hOVMGWPTt89907s5CAqsjduaN2CiGEjZnzHW4XHUru3r1L5cqV8fDwYPr06Tx8+JB79+5x7949Wxftw/77D86cUT+nTw8zZ6qFRJcvt1qwXRg+yiTYrtX9moFMR6eLPNhM5oy8fx8WL1Y7dDoJNiGEfbJ6I6kFLF68OMpncuaI12du9+5pWu/emubkpJ5ZGQzW/0xN084PG6UZ0IU/QOvbV9NCQ7X168Mf8YW9PDzUMAGj1681zctL7dy1K17KK4QQMWXOd7jdNEtaQrw0Sz57piYSnj1b9YbMkwfGj4fmza0+B+OFEWMoOGmcscZG374wa5aqgaGGBRw+rGYbyZJFzehlbN3VNDUTypIlanLmX381nieEEAmBOd/hMrekJZ0/D5UqwdOnkC2bCrgOHeI8Vi0mLnzzXrD17m0SbKCCrHLlKC7w3Xcq2D75RC0BIMEmhLBjEm5xFRwMb96osWkFCqhpsxo1gq++irdJhc+PHEuhie8EW69eKqxiGlC7dsGAAZA1q5qnK1ky6xVWCCHigYRbbBkMsHIljB6tmhwnT1bzPx4+HK+1nvMjx1Fo4tjwYOvZE77/PmZNkWF+/13VLjduVAEnhBB2TsLNXJoGW7aowWAXLoCLi2laxGewjRpPoYljcAh7bPrVVxhmz+HwQR1+fnDtmlrP9Pbt8HMi7fI/ezZ0765qnkIIkQhIuJnj3Dm1DM2xYyrQunSBUaPABnNWnh89nkITRocHW48eeFf9gb6eOpMwe9+dO2rx7HWrDTR23gr166tAlmATQiQidjHOLcFwdoaTJ6FFC7h0SVWLbBBsf42ZSKHx7wTbl1/iXfUHmjaLPthAVTwB7nUeAQ0bwrx5Vi2rEELYgtTczFGwIPj62iTQwvw1dhKFxo0KD7Zu3TDMmUvf/zkQ00EdrbTlfPV8KoE5PiJFmzbWK6wQQtiI1NzMZcNg+3PcZAqNHYleC1UbunaFefM4fMThgzW2MKU4yUK68JTU7Ou7GdzdrVdgIWLh1q1bVK5cmYIFC1K0aFHWrl1r6yIJOyThZif+HDeZwmO+CQ+2Ll3USt0ODvj5xewaGbnPBhrhTDAtWI1bibzWK7AQseTo6Mjs2bO5dOkSe/bs4euvvyYwMNDWxRJ2Rpol7cCf46eYBlvnzvDzz+DggMGgpoOMiS9YRnbuMJDpXPGoSYUK1iuzELGVJUsWsmTJAkDGjBlJmzYtT548IYUF1zkUiZ/U3BK4PydMpfCYEeHB1qmTmkHEwQFvb8iVC77+OmbXmkl/arODmfRn9mxZd1TYRsWKFdHpdOh0OpydnSlQoAArVqyI9NhTp04RGhqKhxUeB8ydOxdPT0+SJUtGyZIlOXz4cLTHP3/+nH79+pEzZ05cXV0pW7YsJ0+eNPuYMWPGGO8/7JU5c2aL31+SZ/WZLhOQBLNYaQydnTBVC3FwCJ/puEMH4wTM69drmk4X9YKj777yctW4QGmEyZKFiEehoaGam5ubNn36dM3Pz0+7ceOG1q9fP02v12s3btwwOfbRo0dagQIFtCNHjli8HKtWrdKcnJy0BQsWaJcuXdL69u2rpUiRQvvvv/+iPKd58+ZawYIFtYMHD2rXrl3TRo8eraVKlUq7ffu2WceMHj1aK1SokObn52d8PXjwwOL3mBiZ8x0u4ZZAnZ04zTTY2rfXtJAQTdPUH+/P8B/Vq2bGs1qwk6t2tWYvbf9+4yWEsImrV69qgHbhwgXjtvPnz2uAtn37duO2169faxUqVNCWLl1qlXKUKVNG6969u8m2jz76SBs6dGikx798+VLT6/Xa1q1bTbYXK1ZMGzFiRIyP0TQVbsWKFbPAXSQ95nyHS7NkAnRu0rcUGTkUfejbpsh27WDRImM74uHDxKh35NwJT9iRojFOIa/J16c2lStLU6SwrdOnT5MmTRoKFiwIwO3btxkxYgQuLi4UKVIEAE3T6NChA1WrVqVt27ZRXmvSpEmkTJky2ldkTY3BwcGcPn2amjVrmmyvWbMmPj4+kX5WSEgIBoOBZO/Nu+rq6soff/wR42PCXLt2jaxZs+Lp6UnLli25ceNGlPcpYkc6lCQw5yZPp/DIYeHB1rYt/PKLSSrFpHekAwYarm6FztdXrUb6+edWKrEQMXfmzBn8/f1xc3MjNDSUV69e4erqyk8//US2bNkAOHLkCKtXr6Zo0aJs3LgRgN9++80YfmG6d+9O8+bNo/28sGu+69GjRxgMBjJlymSyPVOmTFEugOzm5oaXlxfjx4+nQIECZMqUiZUrV3L8+HHy5s0b42MAPvnkE5YuXUq+fPm4f/8+EyZMoGzZsly8eJF06dJF/wsUMWf9imTCkdCbJc9Mnq69cdCHtyl+8UWk7Yj793+4OXICw9UP9evH20KpQnxIlSpVtN69e2vXrl3TTp48qVWqVCnKpkBruXPnjgZoPj4+JtsnTJig5c+fP8rz/vnnH61ixYoaoOn1eq106dJamzZttAIFCph1zPtevHihZcqUSZsxY0bcby6Rk2ZJO3R26kyKjBiCY6hBbWjTRq2vFkk7YoUKagLkqOZoLsEZRjAJLV8+WLrU6oukChFTZ8+epWzZsuTJk4dSpUoxd+5cpk2bhq+vr9nXim2zZPr06dHr9RFqaQ8ePIhQm3tX7ty5OXjwIC9evODWrVucOHGCN2/e4OnpadYx70uRIgVFihTh2rVrZv8ORNTkWy8BODttJkVGDA4Pttat1UrYUTwg0+vVzP4QMeB0OjirK8GZHgvQbdggM5CIBOPGjRs8e/aMwoULG7cVLFiQPHnysHLlSrOv1717d86dOxftq1SpUhHOc3Z2pmTJkuzevdtk++7duylbtuwHPzdFihRkyZKFp0+fsnPnTho0aBCrY8IEBQVx+fJl49g+YSHxUJNMMBJis+SZqTO1N/p3miJbttS0N29idO769aa9JvW80Tyyh0pXf5EgrVmzRnN0dNSCgoJMtvfs2VMrVapUvJYlbCjAokWLtEuXLmn9+vXTUqRIof3777/GY+bMmaNVrVrV+H7Hjh3a9u3btRs3bmi7du3SihUrppUpU0YLDg4265gBAwZoBw4c0G7cuKEdO3ZMq1u3rubm5mby2SJy5nyHS4cSGzrz7WyKDh+Eo+Ftja1lS/jtN7Xo6XsiW3S0cWNo0CB8e6XlX5E5VSAOteYDMpuDSFjOnDlDvnz5cHZ2Ntleo0YN5s6dy+3bt8mePXu8lKVFixY8fvyYcePG4efnR+HChdm2bRs5c+Y0HvPo0SOuX79ufO/v78+wYcO4ffs2adOmpUmTJkycOBEnJyezjrl9+zatWrXi0aNHZMiQgU8//ZRjx46ZfLaIO52mxXQuefsXEBCAu7s7/v7+pEqVyqZlOTP9O4oMHYiTIURtaNECli2LNNi8vaFv3w8sOvrbb2rIQKlS8McfahFVIYRIRMz5Dpdws4EzM76nyJAB4cHWrBmsWAGOjhFqaI8eQfPm4euwhQl71rZuHTTOfxHKlFHrzZ05A9E8vBZCCHtlzne4NEvGs9Mzvqfou8HWtCksXw6OjpHW0PT6iMEGaptOB8P7vKBRqmboXr6ElSsl2IQQAgm3eGMwwI6hc6gx+52myCZNVI3NyQlvb5Vz7wdZ2OO4yGiaxog7PdDduQwDB0L9+ta7ASGEsCMyFCAeeHvDsHI/UGP2AJxD3gCwzbUxG5qvBCcnDAZVY4tNA/F+qnCvcHWYNMnCpRZCCPslNTcr8/aGfaN/YOaV/sZg86YRLV+tIqSlE+scIW3amM0VGZGOxXSi3fcdyewUxYhuIYRIgqTmZkUGAxyb9qNJsG2gIS1ZxRtU1+B+/eDOHfOumwp/pjMAN57j4QEVKkqwCSHEu6TmZkXbh89lwumvjcG2kQa0YDVvUON8NA1u3YKHD825qsYiOtOU9dzGgwqz+8lM/0II8R6puVnJqe/mUnNmP2OwbaI+zVljDLZ3ZcgQ/VyRED4TV2/m0JT1HHGpSoU1vcPHuQkhhDCSmpsVnPp+HkUHhgfbZurRjLWRBhtAtmxqQHbTpirg3u1YEhZ4K1fC/x6doHjvgQS5Z+bT8yvQZ5UqmxBCREbCzcJOzfmJIu8E2+5kdWn+OvJg0+lUja1CBVUzW7cu8plIZs+GxtX84eOWoBnQe6+CrFHPXi6EEEmdhJsFnZzzM0UH9MXlTbDa8PnnBLZdR3ArF3REXiObPTu8yfH9uSLD5pDU64G9p9TGkSOhUqV4vCshhLA/Em4WcvKHnyk6oE94sH32GaxfT0MXF9Y5RVMje++ZmV4PlStH8gHVqsFff8kMJEIIEQMyt6QFnPxxPkW/7h0ebHXqqAFuyZIZj4lsVv8Y9XK8dQvSpIGUKS1WXiGEsEcyt2Q8OjF3AUX7v1Njq107QrBBNDWy6AQFQcOG8OIFnDwJNl7JQAgh7IWEWwxFVvM6/fMCin7dm2TBQeqgWrVgw4YIwRZrI0aoWf67dZNgE0IIM0i4xUBks/X38VrI1NPvBFvNmrBxo+WCbccOmDEDChSAWbMsc00hhEgiJNw+ILLZ+jsVW8TU073Cg61GDcsG2/370L69WnB05UpIntwy1xVCiCRCZiiJRmSz9XcstogfL/c0Btthl+oYvDeBq6vlPrhbN3jwAKZPh2LFLHddIYRIIqTmFo3Dh02bIjsU+4Ufr4TX2PZQjfpBm9h2ytX8ziLRGT8e8uaFnj0teFEhhEg6JNyi4ecX/nP74ouZe7knrkGvAdhLVeqzmVckNznOIooWVbU2IYQQsSLNktHIkkX9+Un5o0y5PcwYbPuoQj228IrkJsfFyZs30K4dnD1rgYsJIUTSJuEWjQoVoPrnJ/CqfoJfWnbioXN69lPZGGw6HWo9tQoW+LCJE+G332DePAtcTAghkjZplozGPp8TFC59FIBNfzZkYXAX7pOJl6SIdG7IWDtxAiZMgFy5pDlSCCEsQGpuUdh9+ATb9qlgy5nJi7u+ZfDlf7wkBaDmhly3LuLckGZ7+RLatoXQUFi6VAZrCyGEBdhNuNWvX58cOXKQLFkysmTJQtu2bbl7965VPuvdYPusqhf9upfh339h/35YsUL96etrgWADGDwY/v4bBg2yUPumEEIIu5k4edasWXh5eZElSxbu3LnDwIEDAfDx8YnxNWIy6eb7wVajQpm4Fz4qgYFQsqQarH3ihPpTCCFEpMyZONluwu19mzdvpmHDhgQFBeHk5BSjcz70i4nXYAvz8qUasJ0rl/U/Swgh7FiiXxXgyZMnLF++nLJly0YbbEFBQQQFBRnfBwQERHlsvAabpqnR4R4eamotCTYhhLAou3nmBjBkyBBSpEhBunTpuHnzJps2bYr2+MmTJ+Pu7m58eXh4RHpcvNfYVq5UM5CsX2/dzxFCiCTKpuE2ZswYdDpdtK9Tp04Zjx80aBBnz55l165d6PV62rVrR3StqsOGDcPf39/4unXrVoRj4j3Ybt1S02o5O6vnbUIIISzOps/cHj16xKNHj6I9JleuXCSLZLb927dv4+HhgY+PD15eXjH6vPfba+M92EJD1dI4e/fCL79Ax47W/TwhhEhE7OaZW/r06UmfPn2szg3L5HefqZnDJp1HfvxRBVuDBtChg/U/Twghkii76FBy4sQJTpw4Qfny5UmTJg03btxg1KhR5M6dO8a1tnft8znFwePngXgMtn/+gSFDIEMGmD8f4xQnQgghLM4uws3V1RVvb29Gjx5NYGAgWbJkoXbt2qxatQqXWIwN23XwJC7JksVfsAFkzAht2kCdOupnIYQQVmMX4VakSBH27dtn0WvGa7CBmlZrwYL4+zwhhEjC7CLcLCXsOV35UgX5pNhH0Y57s5i//wYfH2jfXpoihRAiDsK+s2PSD9JuZyiJjbAelkIIIezXrVu3yJ49e7THJKlwCw0N5e7du7i5uaGLpBYVEBCAh4cHt27d+mA3U3sk92f/Evs9yv3ZP2veo6ZpPH/+nKxZs+LgEP0w7STVLOng4PDBtAdIlSpVov0fD+T+EoPEfo9yf/bPWvfo7u4eo+PsavotIYQQIiYk3IQQQiQ6Em7vcHFxYfTo0bEaO2cP5P7sX2K/R7k/+5dQ7jFJdSgRQgiRNEjNTQghRKIj4SaEECLRkXATQgiR6Ei4CSGESHQk3KJQv359cuTIQbJkyciSJQtt27bl7t27ti6WRfz777907twZT09PXF1dyZ07N6NHjyY4ONjWRbOoiRMnUrZsWZInT07q1KltXZw4mzt3Lp6eniRLloySJUty+PBhWxfJYg4dOkS9evXImjUrOp2OjRs32rpIFjV58mRKly6Nm5sbGTNmpGHDhly9etXWxbKYefPmUbRoUePAbS8vL7Zv327TMkm4RaFKlSqsWbOGq1evsn79eq5fv07Tpk1tXSyLuHLlCqGhofz8889cvHiRWbNm8dNPPzF8+HBbF82igoODadasGT169LB1UeJs9erV9OvXjxEjRnD27FkqVKhAnTp1uHnzpq2LZhGBgYEUK1aMH374wdZFsYqDBw/Ss2dPjh07xu7duwkJCaFmzZoEBgbaumgWkT17dqZMmcKpU6c4deoUVatWpUGDBly8eNF2hdJEjGzatEnT6XRacHCwrYtiFdOmTdM8PT1tXQyrWLx4sebu7m7rYsRJmTJltO7du5ts++ijj7ShQ4faqETWA2gbNmywdTGs6sGDBxqgHTx40NZFsZo0adJoCxcutNnnS80tBp48ecLy5cspW7YsTk5Oti6OVfj7+5M2bVpbF0NEIjg4mNOnT1OzZk2T7TVr1sTHx8dGpRJx4e/vD5Ao/84ZDAZWrVpFYGAgXl5eNiuHhFs0hgwZQooUKUiXLh03b95k06ZNti6SVVy/fp05c+bQvXt3WxdFROLRo0cYDAYyZcpksj1Tpkzcu3fPRqUSsaVpGv3796d8+fIULlzY1sWxmPPnz5MyZUpcXFzo3r07GzZsoGDBgjYrT5IKtzFjxqDT6aJ9nTp1ynj8oEGDOHv2LLt27UKv19OuXbsYLZJnK+beH8Ddu3epXbs2zZo1o0uXLjYqeczF5h4Ti/eXadI0LdKlm0TC1qtXL/766y9Wrlxp66JYVP78+Tl37hzHjh2jR48etG/fnkuXLtmsPElqyZtevXrRsmXLaI/JlSuX8ef06dOTPn168uXLR4ECBfDw8ODYsWM2rWpHx9z7u3v3LlWqVMHLy4v58+dbuXSWYe49Jgbp06dHr9dHqKU9ePAgQm1OJGy9e/dm8+bNHDp0KEbLb9kTZ2dn8uTJA0CpUqU4efIk3333HT///LNNypOkwi0srGIjrMYWFBRkySJZlDn3d+fOHapUqULJkiVZvHjxBxf+Syji8t/QXjk7O1OyZEl2795No0aNjNt3795NgwYNbFgyEVOaptG7d282bNjAgQMH8PT0tHWRrE7TNJt+XyapcIupEydOcOLECcqXL0+aNGm4ceMGo0aNInfu3Am21maOu3fvUrlyZXLkyMH06dN5+PChcV/mzJltWDLLunnzJk+ePOHmzZsYDAbOnTsHQJ48eUiZMqVtC2em/v3707ZtW0qVKmWsad+8eTPRPCd98eIF//zzj/G9r68v586dI23atOTIkcOGJbOMnj17smLFCjZt2oSbm5uxFu7u7o6rq6uNSxd3w4cPp06dOnh4ePD8+XNWrVrFgQMH2LFjh+0KZbN+mgnYX3/9pVWpUkVLmzat5uLiouXKlUvr3r27dvv2bVsXzSIWL16sAZG+EpP27dtHeo/79++3ddFi5ccff9Ry5sypOTs7ayVKlEhU3cj3798f6X+r9u3b27poFhHV37fFixfbumgW0alTJ+P/mxkyZNCqVaum7dq1y6ZlkiVvhBBCJDr28aBFCCGEMIOEmxBCiERHwk0IIUSiI+EmhBAi0ZFwE0IIkehIuAkhhEh0JNyEEEIkOhJuQgghEh0JN5Ho/Pvvv+h0OuN0W/YiV65czJ4922LXq1y5Mv369bPY9WxBp9OxceNGwH7/uwrbkHATduVDy9106NDB1kX8oCVLlpA6deoI20+ePEm3bt3iv0AJwJgxYyhevHiE7X5+ftSpUyf+CyTsnkycLOyKn5+f8efVq1czatQorl69atzm6urK06dPbVE0DAYDOp0u1issZMiQwcIlsn+JaSJvEb+k5ibsSubMmY0vd3d3dDpdhG1hbty4QZUqVUiePDnFihXj6NGjJtfy8fGhYsWKuLq64uHhQZ8+fQgMDDTuf/r0Ke3atSNNmjQkT56cOnXqcO3aNeP+sBrY1q1bKViwIC4uLvz3338EBwczePBgsmXLRooUKfjkk084cOAAAAcOHKBjx474+/sba5tjxowBIjZLPnv2jG7dupEpUyaSJUtG4cKF2bp1KwCPHz+mVatWZM+eneTJk1OkSJFYLX45ZcoUMmXKhJubG507d2bo0KEmNajImjYbNmxoUkNetmwZpUqVws3NjcyZM9O6dWsePHhg3H/gwAF0Oh179+6lVKlSJE+enLJlyxr/UbJkyRLGjh3Ln3/+afydLFmyBDBtlozMpUuX+Oyzz0iZMiWZMmWibdu2PHr0yLh/3bp1FClSBFdXV9KlS0f16tVN/huLxEvCTSRaI0aMYODAgZw7d458+fLRqlUrQkJCADh//jy1atWicePG/PXXX6xevZo//viDXr16Gc/v0KEDp06dYvPmzRw9ehRN0/jss8948+aN8ZiXL18yefJkFi5cyMWLF8mYMSMdO3bkyJEjrFq1ir/++otmzZpRu3Ztrl27RtmyZZk9ezapUqXCz88PPz8/Bg4cGKHsoaGh1KlTBx8fH5YtW8alS5eYMmUKer0egNevX1OyZEm2bt3KhQsX6NatG23btuX48eMx/v2sWbOG0aNHM3HiRE6dOkWWLFmYO3eu2b/n4OBgxo8fz59//snGjRvx9fWNtHl4xIgRzJgxg1OnTuHo6EinTp0AaNGiBQMGDKBQoULG30mLFi0++Ll+fn5UqlSJ4sWLc+rUKXbs2MH9+/dp3ry5cX+rVq3o1KkTly9f5sCBAzRu3BiZKz6JsOmaBELEweLFizV3d/cI2319fTVAW7hwoXHbxYsXNUC7fPmypmma1rZtW61bt24m5x0+fFhzcHDQXr16pf39998aoB05csS4/9GjR5qrq6u2Zs0a4+cD2rlz54zH/PPPP5pOp9Pu3Lljcu1q1appw4YNi7bcOXPm1GbNmqVpmqbt3LlTc3Bw0K5evRrj38dnn32mDRgwwPi+UqVKWt++faM83svLS+vevbvJtk8++UQrVqxYtNdo0KBBtEvRnDhxQgO058+fa5oWvpzNnj17jMf8/vvvGqC9evVK0zRNGz16tMnnhgG0DRs2aJoW/t/17NmzmqZp2siRI7WaNWuaHH/r1i0N0K5evaqdPn1aA7R///03yrKKxEtqbiLRKlq0qPHnLFmyABiby06fPs2SJUtImTKl8VWrVi1CQ0Px9fXl8uXLODo68sknnxivkS5dOvLnz8/ly5eN25ydnU0+58yZM2iaRr58+UyuffDgQa5fvx7jsp87d47s2bOTL1++SPcbDAYmTpxI0aJFSZcuHSlTpmTXrl3cvHkzxp9x+fLlCIvvxmYx3rNnz9KgQQNy5syJm5sblStXBohQluj+e8TG6dOn2b9/v8nv+aOPPgLg+vXrFCtWjGrVqlGkSBGaNWvGggULbPY8VsQ/6VAiEi0nJyfjzzqdDlDNfWF/fvnll/Tp0yfCeTly5ODvv/+O9JqaphmvBaoDy7vvQ0ND0ev1nD592tiEGMac1b8/tDrzjBkzmDVrFrNnz6ZIkSKkSJGCfv36ERwcHOPPiAkHB4cIzXjvNssGBgZSs2ZNatasybJly8iQIQM3b96kVq1aEcoS3X+P2AgNDaVevXpMnTo1wr4sWbKg1+vZvXs3Pj4+7Nq1izlz5jBixAiOHz+Op6dnrD9X2AcJN5EklShRgosXL5InT55I9xcsWJCQkBCOHz9O2bJlAdWJ4++//6ZAgQJRXvfjjz/GYDDw4MEDKlSoEOkxzs7OGAyGaMtXtGhRbt++zd9//x1p7e3w4cM0aNCAL774AlBf9NeuXYu2bO8rUKAAx44do127dsZtx44dMzkmQ4YMJj1UDQYDFy5coEqVKgBcuXKFR48eMWXKFDw8PAA4depUjMsQJia/k/eVKFGC9evXkytXLhwdI/8q0+l0lCtXjnLlyjFq1Chy5szJhg0b6N+/v9llFPZFmiVFkjRkyBCOHj1Kz549OXfuHNeuXWPz5s307t0bgLx589KgQQO6du3KH3/8wZ9//skXX3xBtmzZaNCgQZTXzZcvH23atKFdu3Z4e3vj6+vLyZMnmTp1Ktu2bQNUr8gXL16wd+9eHj16xMuXLyNcp1KlSlSsWJEmTZqwe/dufH192b59Ozt27AAgT548xlrJ5cuX+fLLL7l3755Zv4O+ffvyyy+/8Msvv/D3338zevRoLl68aHJM1apV+f333/n999+5cuUKX331Fc+ePTPuz5EjB87OzsyZM4cbN26wefNmxo8fb1Y5wn4nvr6+nDt3jkePHhEUFPTBc3r27MmTJ09o1aoVJ06c4MaNG+zatYtOnTphMBg4fvw4kyZN4tSpU9y8eRNvb28ePnxo1j8AhP2ScBNJUtGiRTl48CDXrl2jQoUKfPzxx4wcOdL4LAhg8eLFlCxZkrp16+Ll5YWmaWzbts2keS0yixcvpl27dgwYMID8+fNTv359jh8/bqzZlC1blu7du9OiRQsyZMjAtGnTIr3O+vXrKV26NK1ataJgwYIMHjzYWLsZOXIkJUqUoFatWlSuXJnMmTPTsGFDs34HLVq0YNSoUQwZMoSSJUvy33//0aNHD5NjOnXqRPv27WnXrh2VKlXC09PTWGsDVbNbsmQJa9eupWDBgkyZMoXp06ebVQ6AJk2aULt2bapUqUKGDBliNKwha9asHDlyBIPBQK1atShcuDB9+/bF3d0dBwcHUqVKxaFDh/jss8/Ily8f33zzDTNmzJBB4UmETnu/QV0IkWSNGTOGjRs3yhRXwu5JzU0IIUSiI+EmhBAi0ZFmSSGEEImO1NyEEEIkOhJuQgghEh0JNyGEEImOhJsQQohER8JNCCFEoiPhJoQQItGRcBNCCJHoSLgJIYRIdP4PPdnDukzbCPcAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Create a Q-Q plot of the residuals\n",
"\n",
"q3_plot = pg.qqplot(res.residuals_) # SOLUTION"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "753e8d3b-8d25-4ac7-81d7-8f606d9dec09",
"metadata": {
"tags": [
"otter_assign_solution_cell"
]
},
"outputs": [],
"source": [
"# Use the Jarque-Bera normal test for large sample sizes\n",
"\n",
"q3_norm_res = pg.normality(res.residuals_, method='jarque_bera') # SOLUTION"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "5afc057b-0cf0-4df7-8d5e-734980f2fb47",
"metadata": {
"tags": [
"otter_assign_solution_cell"
]
},
"outputs": [],
"source": [
"# Are the residuals normally distributed? 'yes' or 'no'\n",
"\n",
"q3_is_norm = 'yes' # SOLUTION"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f297104c",
"metadata": {
"deletable": false,
"editable": false
},
"outputs": [],
"source": [
"grader.check(\"q3_resid_normality\")"
]
},
{
"cell_type": "markdown",
"id": "01b59934-9f51-429d-a65e-ebf77655a3dc",
"metadata": {},
"source": [
"You don't need to do this test at every stage, but it is a good test to do before you are _done_."
]
},
{
"cell_type": "markdown",
"id": "17cd99fc-7bc7-4f43-9872-50ddc5fc4a9d",
"metadata": {},
"source": [
"## Multiple Regression"
]
},
{
"cell_type": "markdown",
"id": "e0045aea-276f-4dd8-bfd2-cf9129a2cb15",
"metadata": {},
"source": [
"Regression is not limited to a single independent variable, you can add as many as you'd like.\n",
"\n",
"In our case, there are two others that we should consider: `age` and `education`"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "2c9e5a55-d612-4af6-a1b2-113e9ae5f825",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
names
\n",
"
coef
\n",
"
se
\n",
"
T
\n",
"
pval
\n",
"
r2
\n",
"
adj_r2
\n",
"
CI[2.5%]
\n",
"
CI[97.5%]
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
Intercept
\n",
"
0.977449
\n",
"
0.404718
\n",
"
2.415135
\n",
"
1.628781e-02
\n",
"
0.318207
\n",
"
0.311835
\n",
"
0.181214
\n",
"
1.773685
\n",
"
\n",
"
\n",
"
1
\n",
"
YearsSeropositive
\n",
"
-0.037462
\n",
"
0.003390
\n",
"
-11.049854
\n",
"
2.853764e-24
\n",
"
0.318207
\n",
"
0.311835
\n",
"
-0.044132
\n",
"
-0.030792
\n",
"
\n",
"
\n",
"
2
\n",
"
education
\n",
"
-0.102647
\n",
"
0.020406
\n",
"
-5.030176
\n",
"
8.170366e-07
\n",
"
0.318207
\n",
"
0.311835
\n",
"
-0.142794
\n",
"
-0.062500
\n",
"
\n",
"
\n",
"
3
\n",
"
age
\n",
"
0.019297
\n",
"
0.005546
\n",
"
3.479295
\n",
"
5.721793e-04
\n",
"
0.318207
\n",
"
0.311835
\n",
"
0.008385
\n",
"
0.030209
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" names coef se T pval r2 \\\n",
"0 Intercept 0.977449 0.404718 2.415135 1.628781e-02 0.318207 \n",
"1 YearsSeropositive -0.037462 0.003390 -11.049854 2.853764e-24 0.318207 \n",
"2 education -0.102647 0.020406 -5.030176 8.170366e-07 0.318207 \n",
"3 age 0.019297 0.005546 3.479295 5.721793e-04 0.318207 \n",
"\n",
" adj_r2 CI[2.5%] CI[97.5%] \n",
"0 0.311835 0.181214 1.773685 \n",
"1 0.311835 -0.044132 -0.030792 \n",
"2 0.311835 -0.142794 -0.062500 \n",
"3 0.311835 0.008385 0.030209 "
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X = data[['YearsSeropositive', 'education', 'age']]\n",
"y = data['exec_domain_z']\n",
"res = pg.linear_regression(X, y)\n",
"res"
]
},
{
"cell_type": "markdown",
"id": "3653f050-b236-46ff-8b0d-4db6935c6880",
"metadata": {},
"source": [
"Now, it has fit the equation:\n",
"\n",
"`EDZ = -0.037*YS - 0.103*edu + 0.019*age + 0.977`\n",
"\n",
"The education is significant at p=8.17E-7.\n",
"Be caution when comparing coefficients, we might be tempted to compare -0.0422 and -0.0506 and say that education has a more negative effect than YS ...\n",
"But, remember that education ranges from 0-12 and YS ranges from 0-60, these are not on the same scale and are not directly comparable.\n",
"We'll talk about how to compare relative importance later."
]
},
{
"cell_type": "markdown",
"id": "60eb2693-5c50-4784-889d-ac28a1faba2b",
"metadata": {},
"source": [
"As before, we should check the residuals of the model against _each_ independent variable in the regression to check for homoscedasticity."
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "d131c037-88eb-491d-a707-8526b6d2c516",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABLwAAAHACAYAAACoB3EnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADiFUlEQVR4nOz9eXwc9Z3nj790taSWrAPJcuzENoIWwYd8MCZMkGSwM8yOAwSMFyZOdn7YgpnNgPHuZvcbToO5bEhCNosd8puZYOC7G5zZCRiDQ5KFOATL5OBQ1rIhYBnH8owdyxJSt7tb3aWjv3/ILfdRV1fVp7qq+vV8PHg8sKq7rq56X5/3UZRIJBIghBBCCCGEEEIIIcQjFOf7BAghhBBCCCGEEEIIsRIGvAghhBBCCCGEEEKIp2DAixBCCCGEEEIIIYR4Cga8CCGEEEIIIYQQQoinYMCLEEIIIYQQQgghhHgKBrwIIYQQQgghhBBCiKdgwIsQQgghhBBCCCGEeAoGvAghhBBCCCGEEEKIpyjN9wmoMTExgRMnTmDatGkoKirK9+kQQojrSSQSOHPmDGbNmoXiYq55ANQ1hBBiJdQz2VDPEEKItejVNY4OeJ04cQKzZ8/O92kQQojnOH78OD7zmc/k+zQcAXUNIYRYD/XMOahnCCFEDFq6RmjA6/vf/z6+//3v449//CMAYMGCBbj//vuxatUqXd+fNm0agMmLqKmpEXWahBBSMIRCIcyePXtKvhLqGkIIsRLqmWyoZwghxFr06hqhAa/PfOYzeOyxxxAIBAAAzz33HK677jp0d3djwYIFmt9PpvzW1NRQORBCiIWwpOIc1DWEEGI91DPnoJ4hhBAxaOkaoQGva6+9Nu3fjz76KL7//e/jN7/5ja6AFyGEEEIIIYQQQgghuWJbD6/x8XH8y7/8CyKRCD7/+c/LfiYejyMej0/9OxQK2XV6hBBCCgTqGkIIISKhniGEEGcgfHRKT08PqqurUV5ejq997WvYtWsX5s+fL/vZrVu3ora2duo/NnckhBBiNdQ1hBBCREI9QwghzqAokUgkRB5AkiT09fVheHgYL7zwAn7wgx/gV7/6lWzQS241ZPbs2QgGg6x3J4QQCwiFQqitrS1ouUpdQwgh4qCeoZ4hhBDR6NU1wksafT7fVNP6ZcuW4e2338b/+B//A//wD/+Q9dny8nKUl5eLPiVCCCEFDHUNIYQQkVDPEEKIMxBe0phJIpFIW/EghBBCCCGEEEIIIcRKhGZ43XPPPVi1ahVmz56NM2fO4Ec/+hHeeOMN/OxnPxN5WEIIIYQQQgghhBBSwAgNeJ06dQp/8zd/g5MnT6K2thaLFi3Cz372M1x11VUiD0sIIYQQQgghhBBCChihAa+nn35a5O4JIYQQQgghhBBCCMnC9h5ehBBCCCGEEEIIIYSIRPiURkKcSDAqYSAsIRQbRU1lGRqrfKj1+/J9WoQQQkjBQx1NCCGkkKEetA4GvEjBcWJ4BHe+cAD7Dg9M/W15SyMeW7MIs+oq83hmhBBCSGFDHU0IIaSQoR60FpY0koIiGJWyBAgAvHl4AHe9cADBqJSnMyOEEEIKG+poQgghhQz1oPUw4EUKioGwlCVAkrx5eAADYQoRQgghJB9QRxNCCClkqAethwEvUlCEYqOq289obCeEEEKIGKijCSGEFDLUg9bDgBcpKGoqylS3T9PYTgghhBAxUEcTQggpZKgHrYcBL1JQNFb7sLylUXbb8pZGNFZz+gUhhBCSD6ijCSGEFDLUg9bDgBcpKGr9Pjy2ZlGWIFne0ojH1yziuFdCCCEkT1BHE0IIKWSoB62nNN8nQIjdzKqrxLa1SzEQlnAmNoppFWVorPZRgBBCCCF5hjqaEEJIIUM9aC0MeJGCpNZPoUEIIYQ4EepoQgghhQz1oHWwpJEQQgghhBBCCCGEeAoGvAghhBBCCCGEEEKIp2DAixBCCCGEEEIIIYR4Cga8CCGEEEIIIYQQQoinYMCLEEIIIYQQQgghhHgKBrwIIYQQQgghhBBCiKdgwIsQQgghhBBCCCGEeAoGvAghhBBCCCGEEEKIp2DAixBCCCGEEEIIIYR4Cga8CCGEEEIIIYQQQoinYMCLEEIIIYQQQgghhHgKBrwIIYQQQgghhBBCiKdgwIsQQgghhBBCCCGEeAoGvAghhBBCCCGEEEKIp2DAixBCCCGEEEIIIYR4Cga8CCGEEEIIIYQQQoinYMCLEEIIIYQQQgghhHgKBrwIIYQQQgghhBBCiKdgwIsQQgghhBBCCCGEeAoGvAghhBBCCCGEEEKIp2DAixBCCCGEEEIIIYR4Cga8CCGEEEIIIYQQQoinYMCLEEIIIYQQQgghhHgKBrwIIYQQQgghhBBCiKdgwIsQQgghhBBCCCGEeAoGvAghhBBCCCGEEEKIp2DAixBCCCGEEEIIIYR4Cga8CCGEEEIIIYQQQoinYMCLEEIIIYQQQgghhHgKBrwIIYQQQgghhBBCiKdgwIsQQgghhBBCCCGEeAoGvAghhBBCCCGEEEKIp2DAixBCCCGEEEIIIYR4Cga8CCGEEEIIIYQQQoinYMCLEEIIIYQQQgghhHgKBrwIIYQQQgghhBBCiKdgwIsQQgghhBBCCCGEeAoGvAghhBBCCCGEEEKIp2DAixBCCCGEEEIIIYR4Cga8CCGEEEIIIYQQQoinYMCLEEIIIYQQQgghhHgKBrwIIYQQQgghhBBCiKcozfcJECAYlTAQlhCKjaKmsgyNVT7U+n35Pi1CCCGEkCxotxBC3ArlFyGFBQNeeebE8AjufOEA9h0emPrb8pZGPLZmEWbVVebxzAghhBBC0qHdQghxK5RfhBQeLGnMI8GolCV0AeDNwwO464UDCEalPJ0ZIYQQQkg6tFsIIW6F8ouQwoQBrzwyEJayhG6SNw8PYCBMwUsIIYQQZ0C7hRDiVii/CClMhAa8tm7diksvvRTTpk1DU1MTrr/+enz44YciD+kqQrFR1e1nNLYTQgghhNgF7RZCiFuh/CKkMBEa8PrVr36F22+/Hb/5zW/w2muvYWxsDH/5l3+JSCQi8rCuoaaiTHX7NI3thBBCCCF2QbuFEOJWKL8IKUyENq3/2c9+lvbvZ555Bk1NTXj33XexfPlykYd2BY3VPixvacSbMum1y1sa0VjNiSGEEEIIcQa0WwghboXyi5DCxNYeXsFgEABw3nnnyW6Px+MIhUJp/3mZWr8Pj61ZhOUtjWl/X97SiMfXLOKIXEIIEUCh6RpCrIJ2CyH6oJ5xHpRfhBQmRYlEImHHgRKJBK677joMDQ1h3759sp/ZvHkzHnzwway/B4NB1NTUiD7FvBGMShgISzgTG8W0ijI0VvsodAkhQgiFQqitrfW8XFWjUHUNIVZBu4WoQT1DPeNkKL8I8QZ6dY1tAa/bb78dP/nJT9DV1YXPfOYzsp+Jx+OIx+NT/w6FQpg9ezaVAyGEWAQdEeoaQggRCfUM9QwhhIhGr64R2sMryR133IGXX34Zb775pmKwCwDKy8tRXl5uxykRQggpUKhrCCGEiIR6hhBCnIHQgFcikcAdd9yBXbt24Y033kBzc7PIwxGim2Q6cyg2iprKMjRWMZ2ZEEII0QN1KCGEkEKBOs/dCA143X777Xj++eexe/duTJs2DX/6058AALW1taisrBR5aEIUOTE8gjtfOIB9KVNalrc04rE1izCrjs8lIYQQogR1KCGEkEKBOs/9CO3hVVRUJPv3Z555BuvWrdP8PnsAEKsJRiVs2NmdJrSSLG9pxLa1Sy2J2OtdCeCKAbEbytVseE8I0YddOvRUKIahiIRQbAw1laWo9/swo6bC9H6JPVCmZsN7QuSgH+Ac5H4LALboPGIMR/TwsqkfPiG6GQhLskILAN48PICBsGRacOldCeCKASGEEDdhhw7tG4zg7l092N87OPW39kADtqxuxZyGKlP7JoQQp0A/wDko/RYPXbcQ7x4bkv2OVTqPiKc43ydAiJ2EYqOq289obNciGJWyBCYwKRTveuEAglEpp88RQgghTkG0Dj0VimUFuwCgq3cQ9+zqwalQzNT+CSHECdAPcA5qv8Wm3QfR2a7cg9ysziP2wIAXKShqKspUt0/T2K6FntXvXD5HCCGEOAXROnQoImUFu5J09Q5iKELdSAhxP/QDnIPab7Hv8ACWzq5T/K5ZnUfsgQEvUlA0VvuwvKVRdtvylkY0VptLS9W7+i16lZwQQgixGvE6dMzUdkIIcQP0A5yD1m+hhBU6j9gDA16koKj1+/DYmkVZBvvylkY8vmaR6TpsvavfolfJCSGEEKsRr0PVW8tqbSeEEDdAP8A5aP0Wn6mvFKbziD3QciAFx6y6SmxbuxQDYQlnYqOYVlGGxmprpqIkV7/fVJjmkVwJ0Ps5QgghxEmI1KH1VT60BxrQJVPW2B5oQH0VdSMhxP3QD3AOWr/Fp2oqhOk8Yg/M8CIFSa3fhwubqrFkTj0ubKq2TGjpXf0WvUpOCCGEiEKUDp1RU4Etq1vRHmhI+3tySuOMmgpLjkMIIfmEfoBz0PNbiNJ5xB6KEolEIt8noUQoFEJtbS2CwSBqamryfTqE6CYYlXStBOj9HCFWQbmaDe8JIc7iVCiGoYiEUGwMNRWlqK/yMdjlIihTs+E9IXLQD3AO/C3ch165ypJGQnIgKQxDsVHUVJahsUpeGCZXA7TQ+zlCCCHeQq8+KURm1FQwwEUI8Tz0A+xFTe/yt/AuDHgRopMTwyO484UDaaNrl7c04rE1izCrrjKPZ0YIIcRNUJ8QQggh9kG9W7iwhxchOghGpSwhCQBvHh7AXS8cQDAq5enMCCGEuAnqE0IIIcQ+qHcLGwa8CNHBQFjKEpJJ3jw8gIEwBSUhhBBtqE8IIYQQ+6DeLWwY8CJEB6HYqOr2MxrbCSGEEID6hBBCCLET6t3Chj28iOexojFwTUWZ6vZpGtsJIYQQYFKf+H0l6GxvxtLZdYiPTaCirATv9Q1hR9dR6hNCCCEFgV3DW+jHFTYMeBFPY1WDwsZqH5a3NOJNmXTY5S2NaKzmVA9CCCHaNFb7sGPdpdi29zC27+2d+ntboAE71l1KfUIIIcTz2NlEnn5cYcOSRuJZrGxQWOv34bE1i7C8pTHt78tbGvH4mkUcY0sIIUQ339vbi/29g2l/2987iO/9slfhG4QQQog3sLuJPP24woYZXsSz6GlQmIuAm1VXiW1rl2IgLOFMbBTTKsrQWC0m9ZYQQog3GQhL2Ncrr5v2GdBNhBBCiJuw2kfTA/24woUBL+JZRDQorPVTMBJCCDEOm+cSQggpZPKlB+nHFSYsaSSehQ0KCSGEOA3qJkIIIYUM9SCxEwa8iGdJNiiUgw0KCSGE5APqJkIIIYUM9SCxEwa8DBKMSjjSH0Z33xCOnA5b3lyPmIcNCgkhxLu4VQ9TNxFCCClk8qUH3Wo3EHOwh5cB7ByjSszBBoWEEOI93K6HqZsIIYQUMnbrQbfbDcQ4zPDKEbvHqBLz1Pp9uLCpGkvm1OPCpmo6FIQQ4mK8ooepmwghhBQydulBr9gNxBjM8MogGJUwEJYQio2iprIMjVXpkWYRY1S1jkkIIYSQSfIxzlwEInU/7QpCiFugvCKi8YrdQIzBgFcKelIdrR6jyvRKQgghRD/5GmduJSJ1P+0KQohboLwiduAFu4EYhyWNZ9Gb6mjlGFWmVxJCCCG54fZx5iJ1P+0KQohboLwidlFdrp7jU6WxnbgbBrzOoifVEbB2jKreYxJCCCFkErePMxep+2lXEELcAuUVsQtfSTHaAg2y29oCDfCVMCTiZRjOPIveVMfkGNW7XjiANzPSb3Mdo+q09ErW0LsH/laEkELFSj2cD0Tq/lBsFH5fCTrbm7F0dh3iYxOoKCvBe31D2NF1lGUbZ6EOJST/OM0PKhTcIv+sPM/hEQnr25oBAPt7B6f+3hZowPq2ZgRHJABVVpw2cSAMeJ0llxIJq8aoOqksgzX07oG/FSGk0LF7nLmViNT9tZVleHLtUjyz/yi27+2d+ntboAFPrl2Kmkpnl3vaAXUoIc7ASX5QoeAW+Wf1eVaXl2HtP/0Wne3N6GxrRnxsAuWlxeg+PoyNO7vxyoZ2K0+fOAzm750l1xIJK8aoOqUsgzX07oG/FSGETGLXOHOrEan7q8pL8cz+o2kr2MDkivaz+48WfJ8S6lBCnINT/KBCwS3yT8R5Nlb7sGxuPbbv7cUtz72D2374Hm557h1s39uLZXPr+ax5nMK2fFLIR4mEU8oyRI1q1ZuK6pbUWifAsbqEEOJuav0+PL5mEd746DSappVPlR2eCsWw4qLppmR4ODaG7r5hbFgZkC1pDMfGMKPGwotxGdShhDgHPX6Qmo9A/yE33CL/RJynU3xukh8Y8EohHyUSTijLEFFDrzcV1S2ptU6B/Q4IIcT9JAC8euAk9vWm674rLppuar/h+KhqSWMkXtg6gjqUEGeh5gcp+QiPr1mEBED/IUfcIv9EnacTfG6SHxjwyqDWb/+Db+aYVqxuWF1Dr5WKum3t0qlVGz2fI+dgvwNCCLEHUdkDU7qv13rdV1fpwzd//qFsSSMAbLm+1dhJewTqUEKch5wfpOYjvPHR6awFg+S2pAwFwOyvDNwi/4T2ucyDn0/yDwNeLsaq7KhkDf2bMumjRmro9aaiuiW11klY/VsRQgjJRmT2sUjdJ41PZAW7kuzvHYQ0PmFov16BOpQQd6AmJ5umlWcFu5K8eXgAfwrF8MhPPmD2VwZukX9uOU/iHti03qVY2dAvWdec2TjSaF2z3lTUXFJWg1EJR/rD6O4bwpHTYcc0VrQbq38rQggh6Yhu7BuKjcLvK8GGlQE8ffMyPPXVS7Bj3aXYsDIAv6/EVFlJOD6muj2isd3rUIcS4g7UfIT4mHrg/l+HRhzfmD0fuEX+5es86Wt6F2Z4uRSrV4itrGvWm4qq93NO6vPlhAaZrEEnhBBxiM4+rq0sU+2zVVNpvFzDLSUr+YQ6lBDnoybLykuN5WuwesQ98k/UeSr5cU7yNYn1MODlUkQ09LOqrllvKqqezzmpz9eJ4RHc+eMDWU2GzQhDowE01qATQogYRDf2rSovxTP7j8r22SoC8MRNSwzv265SECcs/lhBAgCK8n0WhJBM1GRZ/5m44raOlkZ0Hx9W3K+W/PaKbNOD0+Wf1b6OUlBr6w2tuOvFHkf4mkQMDHi5lJqKMvh9Jehsb5YdPZ7PVVy9o1/1fO5IfzinlXahTYZ/LN9k+M4XDmC7AWHI1QRCCHEeovVraGRUsc9WV+8gQiOjmFFTYWjfdoxePzk8gjc+Oo2maeWIj01gKDqK3x39BFdeNB0zXaC7qHsJcT5qsmzFRdNxxUXTZbc9dN1CfPHJfYr7VZPfZmSDWwJlhSr/1BIojg1GNX1NgEMQ3AwDXi6lsdqHHesuxba9h7NKInasuzRrFdduQaw3FVXrc7mstIsU4v1n4ooNMvcdHkD/mXhO99NJmWuEEELOkat+zZXhEY0MA43tWsyqq8S3blyMoYiEUGwMNZWlqPf7DAfR0s4tKuHYJ1HsOXAiLWjXFmhAc2MV/L4SR+su6l5C3IOWjyC3DQCWza3POcvVjGwQUQEigkKWf2qtCrR08vCIhM2vHCq4IKGXYMDLxXxvb69sSURxURG2nx3JC+Qvmq83FVXtc3r7kYgW4lY7KJxQSQghzkWvfjVCla9EdbtfY7sWInX+cHQU2/Yelr03ALDl+lZH6y7qXkLchZqPoLTNSJarUdkgogJEFIUs/9QSKLR6wsVHJwoySOglGPByKQNhSTXjKCm08hnNtyKrTG8/EtFCXMtBqfSVoLtvSPd1iu4RQwghxBh69atRqnylaAs0yJY1tgUaUOUzbpoFoxLu330Qi2fXYd3l56eVYz6w+yC+feNiU+cekcYUyzH39w4iIjl7CiR1LyHex0jDc6OyweoKEJGYlX9G/TonlHuqJVB0Hx9GR0ujrB/Z0dKItz6W13leDxJ6CQa8XIpeoZWvaL5VK8x6+5FYYcSqCWQtB2V8IoHVT72l+zo5SYsQQpyJ6KBInb8M/+kLF6EYh9McpY5AIzZ+oQV1fuPyfzAi4cufmyM7AXJ9WzMGI+Z0fkQaV90e1dieb6h7CSkMcm14blQ2iC5RtxIz8s+oX+eUnmGN1T5cNa8Jn51Zk9Wb84+nw9i6uhX37OrJ8jUf+NICXLutS3G/IhdJnBAo9AoMeLkUvUIrH6uZVmeV6VmpMWvEagnkOn8Z7ljZAgBZfUs2rGjBLz/sz+k67ZqkRQghJDdEB0Vq/T58qqYcq1o/hXVtk1lY5aXF6A/FMKOm3JRBOzaRUJwACQCbr11g7tw1rl3r3uUb6l5CiBxGZYPoEnUrMXqNRv06J/UMq/X7sOma+bh7V0/aYlB7oAFbVrfiM+f5ZX3NwYikupAjapHEKYFCr6BetEocS1JoyZEqtPKxmqknqyxXav0+XNhUjSVz6nFhU3WWgKyuKEV7oEH2u+2BBlRXKMd2tQRyMDq5Ij73PD+uWTQLT9+8DE999RI8ffMyXN06E7HRcfzDrz7O6TqTmWuZv6GVk7QIIYTkjl79apRToRju3tWDe3YdxC3PvYPbfvgebnnuHdy96yDu2dWDU6GY4X1PTCRUSw7HJxKG9w1M9jppU9C1bYEGzV4o+Ya6lxAih1HZkKwAkcNsibrVGL1Go36dCH/QKMGohHtfOpilH7t6B3HfSwenfL1MX7OhSqw9oHSuWn4pyQ3nvIUkJ/SW+ilF8/2+Emy6Zj4mEomcek/pIR9ZZZH4GNa1NSOB7AysdW3NiMSV+4roLfucWVeJLy781FT031dajO7jw3jkJx/IRv+1rtNIjwFCCCFi0atfjTIUkRSDUl29gxiKSIYnKkY1emiZLTkcHpFwa/sFuLp1JmbUVEyVhfwpOIKZtZUIjkgAqkwdQzTUvYQQOYzIBrUKkDtWmitRF4Gd/c2c1DPRaIsf0faAkXMdjEhTn2O5oz4Y8HIxeoSW3Ivq95Vgx7pL8b29vbj7xZ6pz1qVKmlXVllqbfPYRAIbd3ajs70ZnW3NUyUi3ceHsXFnN56/9TLF/RgRyAkAxcVFqt/Tc5259hgghBAyicj+FiKDIqGYelBKa7satZU++H0l6GxvzupTsqPrKGorzenfaRVlGIxIeLXnJLpSnLuOQAPWtzej2uEljUmoewkhcuQqG1IrQFL9j/4zcZx/nt/RciYBAOquDADjfp2TeiaaCb7ZvUiidq7JEtkNz3en9QBluaM6DHi5HD2COfNFrff7cN9LB2VH6FpRU21Hj4zM2uanb16GqDSeVpedippQ1SuQ5eqp2wMNeHLtUmzc2Z22cs5eIIQQIg47+luICorUqJTY69muRmO1DzvWXYptew9nNa3fse5S03qpqrwUT3dl9wjb1zuIBIAnblpiav+EEOI2MitAplWUYdncekcGu4zoTqN+nZN6JpoNvtm5SKJ2rn+3/AI8sPsg9mXo4DcPD+DOFw5gu4190dyEs5stEMtIrUsem0gojtC1oqZadI8Mudrm7uPDijX0WkJVT78WpXrqrt5BPLv/KDrbm9O+w14ghBAiBrf3t6iv8qn2nKyvMqc7vre3V7Zp/fd+Kb8glAvh2JhqOWbYRHYaIYS4Fa1ew07AqO406tc5qWei6N6cVqJ2rld+tikr2JVk3+EB9J+Jizw118IMrwLEjppqkemfcrXNO7qO4sm1SwGk19DrEap66rOP9IcV66m7egdx39Xz8RcXN7EXCCGECMZoLw6nMKOmAlvOjkBPLQtMTosy2r8LOHtvFBa09llwb5zUk4UQQoh+zOhOo36dU3om5qMXl1HUznV0bEL1u8ER6mA5GPAqQOyqqRaV/ilncEel8akeXvd+cR6ksYmchKqWQNYy8mOj41gyp97YBRFCCNGNF4Iucxqq8MRNSzAUkRCKjaGmohT1VT5TwS5A/L1xUk8WQggh+jGrH4z6dU7pmeiU4JselM7134ZHVL+X7PFF0mHAqwBxUk21EZQM7mQPr9VLPo35s2pz3q+aQKaRTwghzsAr8nhGTYXpAFcmou+N2+0HQggpVLyiO83glOCbHuTOdTg6irZAg2xrgbZAA6p8DO3IwR5eBYiTaqqNkI86bDfVfjuRYFTCkf4wuvuGcOR02PE9dgghzsUueexGuSX63rjdfiCEkELFib6MG/VsPqnzl+GOlS1ZfavbAg24Y2UL6vzeD1oaoSiRSCTyfRJKhEIh1NbWIhgMoqamJt+n4zmSI93V0jpFjn03w4nhEcU67JmCRrLm45hewI5pakQ/lKvZ8J64D9Hy+MTwCO788QFXjv22Q1fpsR9I4UKZmg3vCXECTvJlnOYfONXnzeTk8Aje+Og0mqaVIz42gfLSYvSfiWPFRdPxKYfbJ1ajV64y4EUUcZogyiQfBrcdx3SLwNVDMCphw85u2SaZy1sasY3jc22HcjUb3hN3IkoeB6MSNjzfLdv8vaOl0bKx3yJlPQNSJJ9QpmbDe0Kcgpp+sMsHcZp/4HSfNxPq+En0ylUWehJZtEbXOiFQkY86bNHHdJvA1cLt09QIIc5FlDzuPxNXnXTYfyZu+riiZb2b+pQQQgixDyX9YKcP4iT/wA0+bybU8bnBHl5EFj2CiFiLlsB1Y127F6apEUIKi2GNsd5mx357UdYTQghxL3brJSf5B/R5vQ8zvIgsThJEhYJdqx12lkxyIgwhxG1UaYz1Njv22w5Z76XSeEIIIWIxq5dy1TlO8g/o83ofBryILE4SRIWCHQLX7pJJjrAnhLiNKl+p0LHfomW910rjCSGEiMWMXjKic5zkH9Dn9T4saSSyOHF0rdcRLXDzUUbDEfaEELcheuy3SFnPcklCCCG5YlQvGdU5TvIP6PN6H6EZXm+++Sa+9a1v4d1338XJkyexa9cuXH/99SIPSSwiKYiURtcyUGE9olc78tUgclZdJbatXcppIoQQV1Dr92HueX5cs2gWOtua08Z+n3+e37TsEinrndQImBBCiDswqpfM6Byn+Af0eb2P0IBXJBLB4sWLsX79eqxZs0bkoUgKVvXucIogKhREC9x81qhzmgghxE3MrKvEFxd+Kk3/LZtbb4kcEynr2YuEEEJIrhjVS2Z1jlP8A/q83kZowGvVqlVYtWqV7s/H43HE4/Gpf4dCIRGn5Wms7t3hFEFUKIgUuKxRJ2QS6hqiB5H6rwjAqtaZuPny89MyyMxCOU+IM6CeIW7DiA/iJZ1Dn9e7OKpp/datW/Hggw/m+zRci1Yd9ba1Sx35InOaVDqiBK6TGkQSkk+oa4geROmmYFTCN2R0NTApi83oasp5QpwB9QzRg9N8oFx9kOqKUrQHGtAlM+SlPdCA6gpHhRpIgVKUSCQSthyoqEizh5fcasjs2bMRDAZRU1Njw1k6Gy2heKQ/jC9851eK3//F16/AhU3VdpyqbjhNyl5ODI8opivP5P0uCEKhEGprawtarlLXEC1E6ibRuppyXhunOZleg3qGesat2CkbvOADfXw6jI8HInhm/9G0ycZtgQasb2vGBY1VuGC6s3xP4h306hpHhV3Ly8tRXl6e79NwJHqEott6d7g1I83NOL1GnU4IsQPqGqKGaN0Uio3C7ytBZ3szls6uQ3xsAhVlJXivbwg7uo6a1tVOl/P5xgtOJnE+1DPuw07Z4BUfKDgyio07u9HZ3pw25KX7+DA27uzG87delu9TdDT0e+zBUQEvIo9eoei2OmpOk8oPTq1RpxNCCHEConVTbWUZnly7FM/sP4rte3un/t4WaMCTa5eiptK8rnaqnM83XnEyCSHWYrds8IoPVFNRhqg0nqbLUnGa7+kk6PfYR3G+T4Boo0coAud6d8jhxN4dchlpfl8JNqwM4Ombl2EwIuHI6TCCUSkPZ+ddglEJR/rD6O4bcsz91TI0nHCOhHgNJ8oCJyA6W7qqvDSr/AMA9vcO4tn9R1FVzrVIUei1pwghhYXdssFtVTlKmPU91ewQL9so9HvsRahVFQ6H0dt7LuJ79OhR/P73v8d5552HOXPmiDy0p9ArFEWOOtfCSEpmZkaa31ciu+p91bwmbP7SAsRGJwoy5dPKdFenriZ4ZaWLELfgVFmQC6JKAWoqylRLDs2uWIdjY1nBriRdvYMIx8Ywgy1+hGCXk8kyFULchd0BKNFVOXbJID2+56lQDEMRCaHYGGoqS1Hv92FGTYWiHfL4mkVIAK63UdSg32MvQgNe77zzDlasWDH1769//esAgJtvvhnPPvusyEMbxg4BkesxchGKVvfu0HOuRh2nzGlSne3NWavefl8J/vpzc/CNFw6k/d1LQk8NK51SJ5dyeGWlixA34GRZoBeRAbtpFaV4Zt2l2Lb3cNriS0egAc+suxTTTE6d8oK8c2tAx47WD14IJhPidkT6Wlagd6KuEVmrJYOslt9qvmffYAR37+pJ8+HaAw14dHUrHt7zvqwd8sZHp/HqgZPY1+teG0ULL9gBbkJowOvKK6+ETUMgLcEOI8XIMXIdM25V7w4952rGccpcFVg6uy6rBlwuCKZ3/27HaqfUyasJbus/l0/c6mgS5+BkWaAH0QG72Og4tu89nDVmfV/vIFBUhEevX2h434D75Z2bAzqN1T50tDTKPv8dFrR+8EIwmRC3Y4evZRY9mVFGrkNLBm29oRV3vdhjufyW8z1PhWJZwS5gMpP5vl0HsXhOHV7/oD9rX03TyrOCXanX4XQbRQ9m7QD6ArnBRhFnydVIMfKgGTWE8lGqqPdczTpOqasCg5HsemW5IFgu+3czVjul+VxN0Hpf7DY0rCAfysbNjiZxDm5fWRQdsItK45PBLRn2HR5AVBo3vG9AfNAFECefvBDQuX1FABOJRJoT1hZowO0rAqb3bVcwmc4OIfLky9cy8k7OqqvEt25cLFvuZ/Q6tGTQscGobfJ7KCIplu/v6x3A+vZmbFgZyGodII1PqO7X6TaKHsz4PfQFcocBr7PkYqQYfdDMGEJ2jxnXe65WOE5TqwL94axt8TH7hJ7TDEirndJ8ZRXoeV/y2X/OCPlQNl5wNIkzcHuGkeiA3ZnYmKnterj9SnFBlxPDI7jzxwfSVsitkk9uzw4cCEvofPZtdLY3o7OtGfGxCZSXFqP7+DA6n30br2xoN3X+dgST6ewQokw+fC2j76Ta92Kj44auQ0sGDY/Ibxchv0MautLvK0F331DWtOJ/t2CG6vecZqMY8R+N+j30BYzBgNdZ9BopZh40rWMMRiTgdFjxRbFzzLje+2Gl4yQX7S4vVR8kapXQE+kgGMVqpzQfWVS5vC92B3WNki9l43ZHkzgHu2SByKbyapjVC1XlJaa2a9F/Jo7O55SDLrtvbzPVdzNTlwGTMuLOFw5gu0n55Pam76HYKKLSuGLmuNnzt6MRNZ0dQpQxK6Ny9bWMvpNa37vvmvmqx1W6Di0ZpOZXWd+YXz3MMD6RkJ1WfPBfg4pZ0GZtFKt1i972P3LHNOL30BcwBgNeZ9FrpJh50LSOcSY2ipv+4dd5D7QA+u9Hro6TmqCRi3Z3Hx9Ge6Ahq5eK0v6NINpBMIrVTmk+sqhyfV/sDOoaJV/Kxu1laMQ52CELRGahiA7YVflKsfLi6Zg/qzar1OL9E0FU+cyZTsMj6kGXoMIKvB76z8QVe5/sOzyA/jNxU7+v25u+iz5/0c8mnR1C1LE7g9noO6n1vYkJ9R7YStehJoM6WhrRfXw4530apb7Kp+jDdQQa8euP5csdH/7JB3h1Ywfu333Q0vJSq3WLnmBnRBpXPWaufg99AWMw4HUWJQHh95Vg0zXzMZFIoLtvCGMaAkjtQVMTQm2BhikhlMtKnahVUL1GWy6Okx5Bkxntrqksw5eXzcY9u3oMO2Za90i0g6D3PDIR4ZTanUXlRcGcr2tyexkacRYiZUEwKuH+3QexeHYd1l1+flrA6IHdB/HtGxebOk6t34dvrlmEP34SRVV5CcKxcUyrKEU4Pobm8/ymr6HOX4Z7vjgfD7x8MC0o1R5owOYvLUSd32QGma8Efl8JOtubswJqO7qOwu8znkGmVK6SxEwwDZi0Da6a14TPzqzJOvcPT4Yc3/RddEBKdDDZizqVECuxu5rB6Dup9b2oNG7oOtRk0JbVrXjwlUOy30vu06hfKfe9GTUV2LK6Fffs6kkLek3q0gW4dnuX4rWHRiRLy0u3rG7F5lcOqeoWADld+0BYwrvHhmT7kO3oOor+M3E8/rM/WGoL0RcwBgNeZ5ETEH5fCXasuxTf29uLu1/sAQA8ffMy1f2oPWhKQqgt0ID1bc3YuLN76m96VupEroLmYrTpcZxyMWLlot1GHTM990i0g6D3POQQ4ZQazaIyogS9KJjzdU1ubOxPnI2ojMrBiIQvf24Ontl/NKs3x/q2ZgxGzGehSOMT2Lb3cNao8y2rW03tN8mDLx+SnSz14CuHsP2sYWyUal8pnr55Gbb/sjfr/jx98zJUm8ggq9IIlpkJpgGTz8yma+bj7l09WcHALatbTf+uojOY7MhuFBlM9qJOJcRK7K5mMPpOan2vtrIMj69ZhDc+Oo2maeVTwZJToRhWXDRd90CwTBn04HULER/LvjffXLNIMxtJCTUfZ05DFZ64acm5xvwVpaiv8iESH1MdAFNVXmZpeendu3qweLb8VMh3jg1hKDqKTbsP5nTt4fgonly7VNbWeXLtUkTio5bbQvQFjMGAVwqZAqLe78N9Lx1My/7pPj6MtkCD7NSJ9kADqjXqlTOnEp6JjaL7+DA27uzOevHVVurs6OOQi9GmJZTMGrFy+9cKwOi9R6IdBLO/lRPK/IwG7KwQzE4bJpAvZeO2xv6kcBmbSOCZ/Udle3MAwOZrF5jav9qo83t29eCJm5ZgRk2F4f0PhCXVrF+zQZdyXwme3vcxls6pn+rhlVz1fXrfUTx6g/GgXZWvVNFGaQs0mC7HDEYl3PvSQfkx8y8dNG172JHBZEemsyi9TWeHEG3srGYw+k7q+V5EGserB05m9Re+4qLpmuelJIOU7g0AbNjZbXkvsm1rl2JGTUWWTg5GJVOyTM43UPM19x0ewLrLz5fd1tnejE0v9WRNZ9a69rpKH7758w8VbZ0t17fiW//nI0ttoXz5Ak7zxXKFAa8MUgXEkf5wltG7o+sonjy7ups5XWldWzMice3pTVPH6A/jpn/4teLn1Fbq7OrjoNdo03oRrDZilZrMb1ndCml8AsGRUVT6SrB4dh3ePTaUFUxMvUdmHQSta3d7zw0zATuzgtmJ06jyGXhyS2N/UthMTCTQ3TesmOY/rtEaQAu1UeddvYMYikimAl6igy6R+Bi+fNlcxVVfPXaEEnX+MtyxsgVAto1yx8oW0+WYovWZXRlMTlhIMgIXPgjRh13vuNF3Uut7ACbtX5n+wmYTG+TuzZH+sJBeZErfMyPLlHyDjV9oUfwOAMTHJmT/vnR2nWJPTbVrkMYnFG2R/b2DiI6Oq243agvZ7Qs40RfLFQa8VJAzeqPSODbu7EZnezPu/KuL8a9DI1PTlTbu7Mbzt16me/9mVuqc1MdBz4tgpRGr1mT+rhcPYMmc+inBlUwrVcugM+MgnBweSUs3HoqO4ndHP8GVF03HzLPX7qTfyghmHRyjgtnJ06jyGXhyq6NGCofY6Jhqmn9sVLmMQQ+h2KhqDywtmauF6KCLyAy4Wr8Pc8/z45pFs9ImQPafieN8C/qbidZnzGDShgsfhJjD6mwVo++k2veMBqCMIqoXmZpOKAKwqnUmbj7b3yqpq9RQ8w2+dsWFqt+tqzSmu5WuIayxOKWlD9VKOrWwyxdwsi+WCwx4qaBk9CanKy2dXYfbfvhe2rZcDOFav89wfbZT+jjofRGsNGLVmsx39Q5ifVvz1L+TDkRne3NW9D55j4w6CMGohGOfRLHnwImsQFlzYxX8vhLU+n2oqShTdc6c3nPDCgfHiGB2emYcA0+EyFPn96mm8T96/UJT+6+pLFMNqNUYNGqTiA66iM6Am1lXiS8u/FSaE7Vsbr0l8qq6XN1srNLYrgUzmPRB/UOIscCVqGwVo++k0veCI5Lq96zoL5yKUdlu1B8NRiV8Q8Z/BCZ/D6VAippv8NbHg+hoaVTc59wGf5ZuX97SiM/Uq//uRvuwad8b54dhzPpiTimFdP6dziN6pyomMWIIJwBD9dlOWQXV+yJYacRqNZnPTFnd3zuIzpQgWPK4qffIiIMwHB3NapqcPB4wWbudDPbtWHcptu09nOWc7Vh3qeNXrPMVXHV7ZhwhhUpsTD3NP6ZQVqCXqrISxQypIgBbTTauFx10EZ0BB4gLiPhKi9ERaJRddOoINMJXWmz6GMxgIoRoYSRw5aZsFb9GOxWz/YUz8ZUUq7Z38ZXIy3aj/qjRQIqab7Cj6yheuaMdD758SFZ3z1TpXyaiD1uVr8TQPXUSZnwxJ5VCMuClgpLR29HSiNtXBND57NtTfzNiCE8JXp312alR0trKsqlRr/lcBc3lRbDKiNVqMl8uY3CnBsGU7lGuDkJEGlN16iLSuVTX7+3tlXXOiouKTE/8Ek2+gqtOyWIkhORGaEQ9zV9ruxYRlb4YXb2DiFgQMBIZdKn3l6tmwG253vykSVGrqtL4BG5bcSEmkMjKbL5tRQCj4+aCmUmYwUQIUcJo4MrplQOpFBcXqQZLSoqLLD3e8Ig0VSGTKdvXtzWfzTiryvqe0QUio4EUNd8gKo2jCFDV3Uq6RUQftoFwzNA9TeKE7CgzGXxOCi4z4KWB2jSLVza0mzKEcxG8clHSq+Y1YesNrYiNTuRtFTTXF8EKI1aryXxm5h0AXNBYhZduu9zSexTRqL1O1maLnvglilRBe9/V8/Fu3xAe3vP+1HWJDq46JYuREJIbNRpp+lrbtQjH1ANmWtv1IirootXoVjIZNNLTW9Io4+MJ3PLcO+hsb05rAdB9fBi3PPc2Xvz7y03tnxBCtNDjPyU/lxoscFPlQGlxkWqwxOqAV3V5Gdb+029lZfvGnd14ZUO74neNLBAZDaRo+QYNZ4NCuepuEX3YJvt+G7unTsmOsjuDTxQMeOlA6cWxq/mrUpT0tQ/6ER+bwLa1S3FhU7WpczFKPoISSk3m289Oyty4szvrPGbWVlj+Ymk1P6w9u12rwbJIBWt0dUBJ0L66sQOhEQlV5eKDq+zlQog7qa/yoT3QgC6ZoE57oAH1Vebe3VqdstepaDW6NTOlMRiV8K9DUSCR0QcskcC/DkWneksaJSqNTfUxld9uPruOEELU0PKfhkckbH7lUJYNe+/V81S/Z6ZywOpsnIYqH7a++gGWzqnPCpb88+/68O0bFxvetxyN1T4sm1svK9v1+HO5Bpn0+I9K91SUb2B1Hzaj99RJ2VF2Z/CJggGvPKI3uu20KGkq+QhKyDWZrygrwczaCjzxfz5MM7hFnkfTtHLF5ogdLZO9TLr7huAvL1Hs1/L83/45KssmP2d1uqrR1QE1QXv/7oO2Clon9XJxQmoxIW5gRk0Ftqxuxb27erAvJejVEWjAo6tbMaOmwtT+tWRv07RyU/sXjchy7eDIKCYSwE96TqYFHDsCDdiwsgXBkVFzDkGlT3UBx+nBRkKI+9GSofHRCVkbdlXfsJBFehHZOLV+Hx66biHe+Oj01N+Kiorw6bpK/IfPzUGtXzkgZPR4Zvy5XM9F63hRaTyrqX3qPVXzDZxirxu9p07z++3M4BMFA155pLHap2q0JwWv06KkmeQjKCHXZL6x2ocnblxs23kkp2zK9XjbsCKAVf9jH6LSOJ6+eZlKg+U/YMmcc9F/q9JVzawOOE3QOqGXi1NSiwlxC2Ulxfhi6yysy5h8W2ZBk9Zavw+PXr8Q9+zqSQvqtAca8Oj1C/MuL7QQmRk9PpHA9r2Hs7LrJgOPRXjougWG9w3A9UNYCCHuR02GdrQ04q2P5UvGH97zPl7d2IH7dx+0bJFeZDaO0mCzKy+aLsQuNerPGT0XtbZBG3Z2a95TufNymr1u5J460e8XkcFnJwx45ZnbVwQwkchu/nr7isDUv50WJZUjH0EJUaWmSfSsEGQKsqryUrxzbAjrn317KtOsqKhItcHy+pQJklalq5oJWjlR0OaTfKYWO2WVipBcMDpuPJf9P7TnfSyZU4/1GaUeD+95H9++cbGj3xORmdGxsYm0rLpU9vUOmJ6QCbh7CItdUHYTIg41GfrAlxbg2m1dst+LSuMIjUiWLtKLWiRWG2z2xkenswJhyW1JuzR5brnKoFz9ObM2stzxjvSHVe/pYES+RxsAx5QCppLrPXWD36+F09rSMOCVRwbCEjqffVu2mV3ns2/jlQ3tqPX7HBclLQRyWSFIFWRH+sO4+8WetO1aI+bjGQ6IFVlUZoJWThO0+XYc8pXx5rRVKkL0IvqdGQhLeP2Dfrz+Qb/idiveSZGypwjAqtaZuPny89My4MwiuqG/W4ew2AllNyHiUcqcGYxIqr0Eq8rLVAMQucp9UYvEanq0aVq5ohx+59gQhqKj2LT7oKIMslK3idD3avfU7ytBAtkZYMtbGvHQdQvx7rEhS88lH3jF73dSWxoGvPJIKDaq2vw1KSTtipKaEYCiv2tn0ENrteLh6xbik6gkex5yQrq8VL2ER2672SwqM0ErJwlaJzgO+ch4c1LDSkJyRfSgDjveyZPDI3jjw9NoqrF+0qHIDLiq8hJT27XwSgawKJuCspsQ+1AKXBm1YY3YnFr2dk1lmSF5o6ZH1Sb5drY3Y9NLPVmZvkkZtPWGVtz1Yo9ldrVZnXAqFMNQREIoNoaaylLU+32q97SzvRmbdx+Uvb5Nuw+is71Z0692Ok7LjjKDE9rSAAx45ZVcghKio6RmAguiv5vL/q0wYrVWK3pPh3HLc+/Inkd1efYr1X18GG2BBtmyxrZAA7qPD2f93WwWlZmglVMErVMch3xkvDmtjxohuVBbWaY4qOPJtUtRY7Kxueh3MhiVcGwwij09J7LaDTQ3VpmedCjy/a4uL1WdkCmno3LBaRnARhC5kELZTUh+MWrDGrU51eztq+Y1wVdSLJuNpCVv1PTov1swQ/F7S2fXKQZ83jw8gGODUdVrBHIrhdSjE5R8s77BCO7e1ZOmZ9sDDdi6ulXxnl5+QYPi9e07PIB1l5+vei5uwUnZUV6AAa88kmtQQlSU1ExgQfR3AeD+3QexeHYd1p0t/UiucDyw+2BarxarjFit1YrUEsTM6/SVFGcFt3Z0HcWTa5eiCMhqsLyurRkbd3an7b/Dgiwqs0ErJwhapzgO+ch480oWBSlMqspLVQZ1AE/ctMTU/kW/k0NRCdt+eVj2/AGYbowvMgMuPjaBdW3NSKScLzDpJCUHCJjBSRnARhC9kELZTUj+MWLDGrU51eztzV9akJVNldyflrxR06MH/zWoOPRMi+EReRmkpxRSDi2dUFEmH/DbckNrVrALmPSTNr9yCI+ubkVX7wCappVP6chToRgqy4wNvnGDfsrEKdlRXoABrzzilEyagbCEd48NYcPKgKzxrRZYMBOU0Pruvw2PoKS4CBu/0ILvvv5R1grH+rZmDEYm92+lEau1WpFZgph6ncMj0lQT+qQQj0rjeP63x/CNv7oY9xQXQRqbQFV5KcYmEvjWz/+Q1msgc2CBGcwGrfItaJ3iOOTjPfVCFgUpXMKxMdVBHeHYGGbUGN+/6HcyIo0rnv/+3kFEVPrD6KG2sgzf+8olOBkcSfv7rNoKfO8rl5jKgAuOjGLjzm7Z3qAbd3bj/+38nLlzd4jdYhTRCymU3YQ4g1xtWDM256y6SnzrxsVZpXnh2JhheaOmRx/+yQeK0yY/Xa++wK/UZkWrFFLJj1LTCVtWt+KBlw/J+mbB6Kji9f36408wNjEhO6Hy8xcshN9Xotin7TP1lVkBOLfoJyIOBrzyjBMyacLxUdXyk0hcWcibURBa3/3jYBS3/fC9qUyo33z8yZSASwrJzddOjljP1YhVK31UW61QKkFMXmd1eRnW/tNvZZ2NL//jb/DKhnbMn1WLI/1hrPn+fnS2N+Orl81VHFhglnwHrdTQKj91kuNg93vq9iwKUtjYEayeVVeJx9YsQnBkFKGRUdRWlqGmssx0fy0AiMbVA1pa27WoLi9FRVkxftJzMisLa8OKgKmyw6ryUtXeoFUmSxoBZ9gtRhH9bDZW+xQzL6zI3iaEiMGMzalUYbLxCy2q+zTqI6lNm+w/E8fKi6dj/qzarCSGP5wIyfowgHYppFpwTm2AgNJwmZDKAJXO9mbc/5J8n677dx/EpmvmZw0IAybv+adqKmzXT/kerkW0YcBLB6If5HwHJeoqffjmzz9ULN/Ycn2r4nfNKAi9mVRdvYNIAFmNCPf3DmJ8IgEgNyNWq/RRabUimVWWWYKYep2N1T4sm1svqzRSAxV6BxbkQj4ErtFj6ik/dVrQx8731O1ZFKSwsSNYrdT7Y8vqVsxpqDK172mV6qaR1nYtRqRxbP9lryGdq0URoNozssjwnuVJJA/qEux4Nm9fEcBEIpEVzLQqe5sQKyhkJ13u2o3anGoVJl+74kLV81CTN1oLH5W+Ulm79JOIhDv/ah4e2nMozcdoDzTgoesW4on/86HqfpWIxEdVnxm5c/l4IKK4v+oK5QEqWsG3e6+ep5nFZfWzrHTtZtvpFPJ7aCcMeGnghClxopHGJ9DdN6xY0qg2DcTMamYumVT7ewfRebZUMJVkxpdeI1Zv6WPmakVVeSneOTaEjTu7s9JoUxWh3kCF1UZ3Pp5To8fU+xsUetDHzVkUpLARHaw+FYph8yuHsHRO/VQmbVJnPfjKIWy5YRFm1FQY3n+9X12v1ZsumVQuVZksmVRe+daiqBi4pb0ZxUDa6nhHoAHr25tRZKz9SRputotEP5sDYQmdz74tm+VtZfY2IWZw8ztsFqVrf3zNIkM2p1qFyVsfDyrqEi15I9cTOElboAG+Enlh7i8vxab//XvZ3lj37z6Ix25YhDOxsaxr/IxKKaTfV4KaSl/OzffVfJ3+UBxfuHg65slkopUUqa+ijEjjttrHSs+M3MRLQH87nUJ+D+2GAS8VnDIlTjQRzZJGdePb6Gpmrd+HR65fiHt29aQ1c1fKpJJrtltbeS6zSo8Rm0u/sszViqryUvx0br2mItQTqLDS6M7Hc2rmmLmUnxZ60Cff2Z+EGEF0sHo4KuErl82V1Vnr25oxHJVMBbyKANx+5YWKes1sQlNEoyTSTI+w+kofgpFRrGqdOdWkvry0GKdCMVT7SlFfae7eu90uqvX78PiaRXjjo9NZzZBXXDTd9LmLyN4mxErc/g6bQe3a7zx77bnanGoVJju6juKVO9rx4MuHctaFwyMSbm2/AFe3zsSMmoopWfWn4Ahm1lYiOCIByM5mDsfGZKf0ApNBr/jYhOw1Js9Lzi/ZdM18bHrpYFo/LcDcBMufHDiB+69dgHt29WRloq255NOqfbqmVZTZZh+rPTNyEy9Tt6uVgRbye5gPGPBSwSlT4kRTW+nDt/7PR4rlFY9ct1Dxu2ZWM4NRCQ/teR9L5tRjfVszqspLEYmPTTXXzRR0mY0Wl7c0orS4CN19Q6ipLMPWG1qx+eVDeC2lXjxTqZjpV6bUlFLOsdISxFY6hPl4Ts0cM9ceKgz6EOI+RAarEwkoTq8CgE1Xzze1/08iEjqfe0dRr73495ejyURATbNkssK4aVZeWoxtew9n9T4BJrPTtp+dfmwUL9hFCUC2GfIVF003vW8n9Z4kRA4vvMNG0XPtFzZV53T9au98VBpHEWBIF06rKMNgRMKrPSfTAljJbN1qheNOBsKUCY6MKl6jkl9yyZw62Z5ZgPEJlv/1Lz+Lu16Un9L4wO5Dqn26Gqt9tpUCqj0zShMvk6gtcJgZGEdyhwEvFZwyJU408bEJ1fIKtTHmZlYzB8KTzQyTDQ03rAygu29I9lzaM0ocO1oacduKAFY9uW8qMJacCHL3F+chNCKvVMz0K7M69dQqhzAfz6mZY9IhIKQwEBWsTgCqOithcv+h2JiqXlNrtquHYkC1ZNJM1eFAWJINdgHAPgucWbfbRVOr6jlmKujFab0nCcnE7e+wGURcu9Y733A2EJOrXKkqL8XTXdkLO/vO6rgnbloi+z2/T9219/uUe2cp+SVqvbgA7QmWcvvUCj6q9emKSuP4hk2lgGrPjNLEyyRq/oyZBAySOwx4qVAojvkZjZLFsMp2M/coU4js6DqKJ8+uPqcK+GQgSxqfwF9c3DTVT6vz2bfTssDePDyAe3b1YNvapbhgerXsMaVx9eCeUr8yUamnVjiE+XhOcz3mqVBsKjOutrIUW29oxcN73lfth0YIEYtbm6VGNXpcaW3XokYjw0pruxa+kmJsWBEAEomsPlsbVgQUe7PoITgiwe8rQWd7s+yqcVBjRVoLt9tForNbCr33JHE+bn+HU8lVh4m4dlHvfDim3Ouxq3cQ4dgYZtRkbysuLlLt/VVSrF6UL+eX1FSoZ41p3bdcG9oDk3265KpqKkqLs3qJAeJKAdWeme7jw4Z7tJlJwCC5w4CXCoWyUldXqSGoVLabuUeZQiQqjWPjzu6pMpLayjLU+31ZWU9H+sOGUmsB9eAdAMV+ZU5OPc3Hc5rLMeWmqXUEGrFj3aVpQUs6BITYh5ubpdZp9KHS2q5FfZUP7YEG2T4o7YEG1FeZ2780nsD6s60A1mWUTK5/9m28dFub4X1XlZeqrhpXlSuv7uuhsdqHv5jXhItn1mSPvD8ZcrxdZEd2S6H3niTOxiu+jREdJuraRbzzRmVVaXER1p8d8pXZg3J9W7NmwEsOEfdNK/hY6SvBf/uX/5v1+9579TxbS3Ibq324al4TPiuj8/54Ooytq1txz66enIOdRhMwiDEY8FLBDSt1VqzQ11SWoSPQmJXi7/eVYNPV85FIYKpPVub+zdwjOQGaLCNZ3tKoGKXPRzmdk1NP8/Gc6j3mqVAsK9gF4OyzlsCrG9sxHKVDQIiduL1ZqmiHbUZNBbacNWJTg17tgQZsWd1qqiE+ANkpjEUpU6nMZKj5SosV+5sVAXjkeuWenHq5a9U8PPjywTRd2BFowANfMr9v0diV3cLek8SpuMG30cKoDhN57Va/80ZlVUOVD1tf/SBtinFyQeWff9eHb9+4WHW/Sn6l1fetuqJUcUrjByeCGIqOyv6+Nw+NqO7X6pLcWr9vsp+YTHP9Latb8Znz/IaCnUYTMIgxGPDSwMkrdWZX6M+VmY3inqvnITgiYcPz3RgIT5ZE7Lh5Gb73y17cvetcNpXc/o3eI6MC1IzBatRRsjP11EgQ0+xzKuqYQxFJcQVjX+8gYqMTWDKnXtc5Og23loMR4vamxXY4bHMaqvDETUvOlVNUlKK+Sn5ISa7UVpbhqa9egqf3fZwRNGrEU1+9BDUaWddqxMcm0DcYxcsb2lBaUowzI5PyaXR8Arf/8D3EVHpy6mF4ZBQPvnwwq0/Yvt5BPPjyITyyeqGjnx2vZLcQYoZ8+DZW2kxmdJiT/bpUjMqqWr8PD163EHe9cCBNv+jRj1p+pdp9y/X3jcbH8I2/moeH9hzKCiRtumYB+oMx5ZujQk1lmaXPWjAq4d6XDso217/vpYNTwdWck00ELr7QP8mGAS8dOHGlzuwKvVyZWXugAf/ytc/jyOkImqaV45s/+0NWSYfS/o3eIyOKx4zBatRRsiv11EwQ0+hvIPKYodiYaj8Zs82f84XSPUv2mguOUMkQ5+KFpsV2OC0zaiosCXBlUlVeiqf3fSwTNBoAiqC5Aq/G2NgY/uctn8NbRwanRtlHpHGcCo7gf97yOYRN/rYj0rhyU/zeAYwojJF3Cl7IbiHECuz0bawuoTerw5zo12VS6/fhkesXymYaP3K9+sKCEf2o16+U24eR33d0IoGH9hySDSQ9tOcQ/ttfflb2e2p9s66a14TykmK8evBPaJpWjvjYBIaio/jd0U9w5UXTMdPAsyZqgdDs4otSUMvN7SpEwoCXAzASiTXzAiqVmXX1DmLTSwexvq0Zp8/EZfuX6Nl/ruSqeMwarEYUgRWpp3K/M4Cpv51X5cN9uw6mlZb6fSVYNLsOfxyI4E/BEdT6fZYGUUSXNtVWqveTqa10nwhSvWcvHsCSOfVT10olQ5yIV5oWi3ZaRK2SBqOjqpMUg9FRw4G2uspyHB8ewU96Tmb1bzm/sQqzTcqiMxqLFFrbnUARgFWtM3Hz5edPlfv0n4nn+7QI8SQi7Eyv6DA1glEJD+15H0vm1GN9Rmniw3vex7dvXKx633LVj3r8yuTnMv0Yrd9X7nsTiYRqIsFdq+R7je3oOopXN3bg/t0Hs3zAB7+0AH1DI9hz4ESW/mturILfV6IZ9Ms8z7BGyxqjC4RmfFmloNbWG1px14s9rm1XIRL3eZt5QGRqoNFIrJnVDbUys67eQdy56mIc/8TeGulcMbu6r0cRpP7ulSpjfAFt5Sr3O3e0NOL2FYGpxu1P37wsK9glFyyyMogiurRpWkUZntn/vmI/mW/+e+OZDPlC7Z519Q5ONQsFqGSIM2FZlzYiV0m1JiUGTehXaSKB7b/sVSy/f/g6c322tJrem22KL5pgVMoaZ59ErXeo02DJCnELIuzMQtBhA2EJr3/Qj9c/6FfcbuU7r+VXDo9I2PzKoZyayL9zbAhD0VFseil9MX95SyM2fqFF9XhnRuQXT/5sbj3q/WWyPuBwdBTb9h5WbT+jdM+UdP5D1y2E31eSNVU+iZngqtWZeMcGo65qV2GnHmPASwOhRq+JVQ8zqxtaZWTh2DjKS9XHoleUlSg2srcLvasXRl6ozN99w8qA4tQuLeWq9DvvOzyAiUQCne3N2L63F/GM3iqd7c2yzYetDKKILm0akcZVg6tOL3+RQ+ueZf6OTlQypLBhWZc6waiE+3cfxOLZdVh3NgsoWYr9wO6DmivrWlRXqJte1eXGTTM1mbu/dxAjo+ZkbpWvVHXkfZXP2Wal2/vXAe6esEq8jZy9LcLOFKnDnBJMtrv1gJZfGR+dyLmJ/N8tvwCbXurJymh+8/AAvnbFharHq/WXZematkADbl8ROLs9+3f5t+ERVf0nNzAGUPfH7999cLJp/Ys9Wd+zIrhqZSbesMZiWr6TVVKxW4852zLJM6LLvcwYXmZWN2o0jO06fxlm1VYo7r890IA9PSddUbZl5IWS+913dB3Fk2fTclODXlfNa8LmLy3AQFjCxwMRWeWo9jvv7x1E59mMoMwg49LZdWmZXamYMcytzFzTwgu9gjLRMgrkgsVuvE7ibezogeUUxyFXBiMSvnrZXJwMphvys2or8Gdz6jEYMRcUKS8tVg0aaS04qaG0Cj21PW4u4FXpK8GGsw5HpiOyYUWLpk7JN27XSW6fsEq8i5K9fe/V81S/Z9TOFKHDnBRMNlu2mav+VfMrO1oa8dbH8oEkNdoDjfju64dlt7318aBiL66Olka89v4p2UmTnc++jT13tAPILpPUWtBR0o9a/vi9V8/Lujf5WiBU02FatoNTSn3zoccY8FJB9EqgGcPLzOpGfZVPMVupPdCA885OopLbf3ugAevamrFxZ/fU33J5QO10gIy+UHK/e1Qax8ad3ehsb8Z9V89HbHQcNZVl8JUUZ9VLZypHvRlB3ceH05ygzEyhTIwY5ieGR3Dnjw9MpRabyVzTgxf7LKgZBW2BBnQfH876uxuvk3gfkT2wMmUNYL3jIEqfjCcSqCgrlu2DtWFFABOJhKn9D0elqdLnzP2vb2vGcFQyvO8ajb6IWtu1CMfHEBudwNWtM9MckVOhGGKj4wjHx9Bk6ghicbtO8kKGGvEeavb2qr5hYeWHVuowpwWTzSQ2GAncqfmVD3xpAf76H36NDSsDWQOoev4tqBi4Gp9Q1pU7uo7ilQ3tePCVQ7LHu3Zbl2yAyu8rQQLAhp3dWdf34HULVMsPaxUmIGv5aSPSuGMme6rpMLWG/k4q9c2HHmPASwWtF2AoKpkq6zNreBld3ZhRU4Etq1tlJ39sWd061Sw3c/8VZSXY03MSG3d2ZwkTPQ+o3SsnA2EJ7x4bkhXQO7qOKp6v0u8elcaxfW8v/uLiJiyZU49gVMoSuEC2ctSbEZSaRba/d9CSSH2qQ1hdXop3/jiEd/uGprYrZa5ZtXLhxT4LSkaBXDAYcO91EmKUYFTKCnYBk7LxzhcOYLsFjoNIfVJaVKTaB+sRk32w/L5S/Ienf4fO9uas1euNO7vx4t9fbnjflWUlqqvmlWXmMrCCI6O4/fn30NnenNZY/0Qwhkd+8gGev/UyU/sXjdt1ktsz1Ig3UXNgH97zvmKTcT12pl0L5U4LJhtNbDATuFPyKz+JSHhszSLZAVS3tl+A65d8Wvb3VSvfj0rjkMbHZQeIjE9MKAatOtubsXn3QdkyyQd2H1IsP+xoaUTTtHLZfdZUlKlOlJ9WUeaYyZ5qOuzDkyFsPevfOyEbTYl86DEGvFTQClQER0Zxy3PvADBmaFtheBl9Aec0VOGJm5ZgKCIhFBtDTUUp6s9mdintv7tvSLHEDlB/QPOxchKOj6pOCIwoTN7QG4jUqxxV04QDDZg+rRxPffUSVJSVoOffhnH9kk9j87ULJrebiNTLOYTJa08GLeUy16xcufBqryA5o6CirBibXz6UpqTdfp2EGKH/TDwr2JVk3+EB9J+Jm+6xIlKfjIyK7YNVU1mGP5tbL6tPO1oaUaOwCq2HoaiEv+24AACyhqT8bccFGI5KmNNQZXj/cvqxqOjcNC2nZ0i5XSe5PUONeBM1BzYqjSM0IhlaoLdzoVykE240aGckscFs4E7Or4yNTcj2FE4OoPrOTUsUm8irle8jAdng1NYbWhX9pssvaFBt92Kk/LCx2ocd6y7Ftr2Hs/zFHesuddRCiJoOe+i6hZhpQ7sKs+RDjzHgpUIupUtGDG1RhpdewTqjpiKn0edmHtB8rJzUVfrwzZ9/qDqtQw69gUi9ylHpd+5oacRtVwbw5X/8zVSQJJlll3RIHjf4fCg5hPt7B1EM4Ed/9+f416GRtBWMKy+ajmXnn6d6TUawo1dQPpAzCr5942LPXSchuaLVOFVrSqEWovVJRKsPlslhG0UAbr/ywqyx7G2BBtx+ZQDyw9j1UV1ehrX/9Ft0tjdPNdxPZo997X+9i1c2tJs6dzc5Bkq4WSe5PUONeBMt/6CqPPcMGbsXykU54VYF7RIA9CgHEYG7cGxMdQDVmdgYmpqqs36P+NiEas/H/jNx2SqcJ/7Ph/jx1y6XzRrTqn4xWn74vb3yWd3FRUXYfrYSxilo6TCnZKMpkQ89xoCXCkqBimSfjczSJSOG9qy6SnzrxsXnMq0qS1Hvz8600ovI1RAzD2g+0hel8QnVVXppXL5Hlt5AZC7KMVM4VZWX4p1jQ7jlubfTnKeu3kHc99LBKUWei2Ge2Yx+8ew6vHtsKMs529c7iHVn4rjth+8BOJf1JXKcvNOFr1UUynUSokaVRuNyv8nG5qL1SV2lenmDUh8QvQyPjKLzuXdkSxo7n3sbL/z95ZhpUF83VvuwTCF7zCpD0k2OgRJuldV2Zai5deAEyQ8iHFi7F8rNXoPcOwPAVNDOiE8nInBnVOeG42MYHUvgjpUB3LXqYoRj45hWUYpwfBTS6AQap/myqofaAg14bM0ihGPyWYEDYfUel0bKDwfCkmpWuhN7I7pVhwH5ybRmwEuDzICDr7QYrx78k2wfKyB3Q9vKAJXSasg7x4bwq49OY9nceoTjY4aNFzMPaD7SF8Nx+fGzSSIq2/UEmowqxwQmmyLLpfEC2Ypcj1DTU76YSmpD/GRK8tbV8hlvhBCSC1W+UtUyhiqfOdNDtD5pmlaumsWk1AdEL2dGRqd6QspuNxGwE21IutEx8BqiM9ScNKmOuAMRcsfuhXIz16D0zjx03UK8e2xI9jtaQTujGW4igo9aOremskw24HcmNoqxxAT+ce/RtD7BHYEGrG9vxumQpFqFo+T/WH19ep41LgJYi92Z1gx46SD1hTvSH1btY5WLoW11uq7caojfVzLVxyo1wGLUeDH6gOYjfTFXp0hOmF3YVK34mdrKsqnm/1rKMVMZPvXVS1TPLRdFrla+CEw2eMx8ZjNTgrt6BxHTmApJCCF6qPOX4cEvLcTmlw9mDUbZ/KWFqPObC0jZoU9+8OaRtJHoyQyvH+z7GE/cuNjUvqdpZIiZDdhZnTmeCpumOwNRq/tOm1RH3IPVDmw+FsqNXIPaO7Np90FZGzyJmrw0muEmIvjYWO3DVfOa8NmZNVlZz388HYavpFh+auKXFsi2ltnXO4gJAHf+1cWyx9vfO4jRiQnFIJPV16f1rFX6SmSvj4sA5rAzS62gAl5WRGetNLStTteVM0Q725tlGw2aMV6MPKD5SF/M5bfSs6Ip95mr5jVh6w2tiI1OKCpHOWVodgKj3vLF/b2D6GxrTvtbZv+5JGoZb4QQkguPvfoBlsypx/qMkr3HfvqB6YCRaH1yOhzHly+bKzvwZH1bM06HzTXdrygtRnugIS0YmKQ90IAKDf2gxcnhEbzx0Wk0TStHfGwC4fgYuvuGceVF0w2XSibxStN0rtbL47RJdcRdWOnA5qtfnaFyOIV3Zt/hAdzS1qw4LV5NXppZXNAK3OUq/2r9vsnph7t60nRie6ABj65uxeZXDskG/IIqvb/29w5CUlho9/tKUFRUpBpksjK4qvWsvdc3zEUAl1MwAS+9KdpaQsBKQ9vqlVI5Q3Tp7DrVaRZWGS96hKfd6Yt6fys9K5qAfB3+ax/0Iz42gW1rl6Zlg2kFpLqPDyuW/GgpcjPli0r95wD3OCqEEGczEJbw+h/68fof+hW3m5X7IvXJ2ERCcSIVANx/zXxT+x9NTGDTNQvw8J5DWRlw91+7AKMJ49m2waiEY59EsefAiawmwc2NVfD7SkzdI7ucUJEBKZbsKcMMPqKFXcHifCyUG0HtnfH7SjCrrhLdXR/nPOTD7OKCUuDOiPwLRiXc+9LBLJ2Y7Du8eHYdXv8gW9+fDI6onuPpcFz2753tzdi8+yD2qSRrJNHbzF8NrcmHX3xyn+z38rkIwEWb3CiIgJfeFG29QsAqQ9uKldLUB766vBRbb2jFw3venwp6xDXK1KwwXnIRnnpWTqx8ifX8VnpWNAHoXvXUE5Da0XUUT54V2KkKREuRGylfvKCxCi/ddvlUo3y5oJhTpjtRgBPifuxymkWlwycSUF2VnkiY239thQ8PvnwQ69uacefZRr7VFSXoD8Xx3dc+xANfWmh438PRUWzbe1izL4rhc7fBCRUZkGLJnjpeyeAjYrA7WOyGiapq70xnezMe3nPI0JAPEYsLRuWfVhbbusvPl93mK1HPVq5VuHeXX9Cgmqzxp1AMj/zkA0ufQ6Vn7Y+DEdXJzHrsGat9G68s2tjp8xVEwEtvQCMXIWCFoW1WmMk98B0tjdix7lJ0Pjs5/c9s6ZwWVhuPIl5ird9Kj3Om5d8kBZ7egFRUGsfGnd3obG/GpqvnIzY6rkuRqz3LcuWL7YEG1Fed691SVV6Kn86td+RqmVcEOCGFTnW5umlRpbE932iVd5st/55RU4E7V83Dvbt6sjK8Hl3daqrXVkRSLyGJSOZL10U6oaIDUnaV7Ll18SZfZWTE+eQrWOz0aXRq74xa4EZryIeexYVc5YxR+aflJylNve8+PoyOlkbZYy5vaUR9lS+r2qUt0ICSYvWUrX8dGhHyHMo9a9U6pkKqYbVv45VFG7t9PmdbnRahd7XZ7r4FZlZKlR74fYcHUATgpxs7MBSVUO8Xa7xYaTzm6yW2YkWzoqwE3X1DqPSV6A5IRaVxHDg+jL9tb9Z9XVrPcmb54rq25jTnTMlRASYHMuTLOPeKACeETK7qqk1p1Fr1zTdaATmzAbtgVMLDe96X7XH2yJ738e0bFxuWd5G48ko0AERUVqpzQZQTKjogZUf2oZsXb9xSRkbsh/3d5FF7Z7SSDrSm/6ktLhiRM0bln9Yi1sxa+eN9eDKErQrDvR66biH+/f//LXz5c3OmhsMk9aBRPSXiOTSzCCDCt/HCe5gPn68gAl56Ahr56ltgdKVU64Efm0hgyZx6AFAUxFtWt2IwIuHjgYjhIIeV9y1fL7FeYab0mfZAA/b0nMT2vb2a0xdTA1JGDEitZ3n2eZV46quXTCmNjTu78fytl6V9JtNREbH6kOvKthcEOCFkkuERCevPBvczV27XtzUjOCIBqMrT2WlTBKgG7Ey2C5nscfZBv2zPk+R2o/JuWqW6WTetwhqzT1QGk2hbTHTJnhcWb9xQRkbsh/3dlFF6ZwY0soP0TP+TW1wwKmeMyj+tRazaitIsHykZ1JqpUio4EJZkM+A2rAwoZoZ1tDTKDt5KEomrBxFzxcwigAjfxgvvYT58voIIeFmRoi2yb4GRldJcHng5QVxRVowHXj6UZnAbCXLUVJTB7ytBZ3tzzhNIzFyTlegVZnKfaT+bRZVsAq+1mtN8tp+WUQNS7VluCzTg54dOZSkPtd/AKSWpXhDghJBJqsvLsPaffovO9uaslduNO7vxyob2fJ+iKkVFUA3YFZmMeAVHJFW9GRwxLu+KAHQEGrGvV8ZRCDSaDtYBYjOYRAekRJfseWXxxullZMR+2N9NHaV3RsT0v4GwhHePDSlOf1SSM43VPtVAkpL801rEOhMbVQ2Sy90b/xn5hvUAsKPrKH6ysR0P7D6UUxN5v68ENZU+zSBirhhdBBDh23jhPcyHz1cQAS+9AQ039S3QeuCTJXapke3UqYSZwsDvK8Gi2XX440AEfwqOoNbv0xURb6z2Yce6S7Ft72FdE0jUou75fIn1CLPMz1SUlWBPz8m0JvBq0xfbAg0oLS7CvLOZd0ZQepYzA29JtJ5dp5SkekGAE0Imaaz2YdncetmVWyv16alQDEMRCaHYGGoqS1Hv95nqf5Wkzu/DN3/2ByydU58VsNv522PYcsMiU/uvqijF9q8sxY6uo2n3qCPQgO1fWYqqihLD+04AWN9+PoBE2oSrjkAD1refr9mPUgvRGUyiA1KiS/a4eEO8Cvu75Z7ZasX0P7ljRqVRPLl2KZ7ZfzTL93py7VJE4spy5vYVAUwkElmBq9tXBBS/o2cRK9cguVrW2NI5dShBkWILlmUZvYiTbLpmPja9dDBrwUdUfy8trEwKSeKF9zAfPl9BBLwA7YCG2/oWqD3wqSV2QHZkOzPI4feVyApOvRHx7+3t1TWBRGtVONeXWK/i0fu5TGEWjEqyfa2Sn+nuG8py6HZ0HcX2ryxFMSDjbDRrNmLUg1LG3uaXD6VNEtHz7Jo1zlPvbaWvBItn1+HdY0NZE020gmdeEOCEkEns0Kd9gxHcvasnTfe0BxqwZXUr5jSYK5ecUVOBB65dgHt29aTJ+OT+zQbVKktL8EzX0bSG9UBSZxTh0dXGpzSWlxbjh785hsVz6rEuwzH54W+OYdM1802du9HMAr3Y8ezMqqvEt25cLCRYapch79am+MS9uM1Pshqjma1K8qY/NAK/rwTb1i5FU005wrFxTKsoxalQDHe+cACR+KjiMR+5fiEe+9mHqtN45RgIS+h89m3ZwFXns29jzx3tU59LlS0iFrG0ssaGRyTMaaySfa6UnsNL5tTh7hd7ZI+XjwzbXJNC9OCF9zAfPl/BBLwA7eism/oW5JLpkxnZzgxydLY345n9R7MEp960WrnSCSB9AoneVWG9L7FexWNUQen5npJhW4QirGqdmeZsnArFUF1eioYqa54luWf52zcuzvnZNWOcy92j5OpSatZbErXgmRcEOCHkHEUAVrXOxM2Xnz8lB/tVShhy4VQolhXsAoCu3kHcs6sHT9y0xHTwYk5DFZ64ack5J6WiNG3irRki0njagkgq+3oHVEega5IAvvFX8/DwnkNZwbr7r12AhMkUr3DceGaBXkTbYiJLMu0w5N3cFJ+4Gzf5SVZiJrNVMWh13UI8/7d/jgdfOZS1cPPDW/8c/tJixWP+69CI6jRepamJodgootK4bODK7ytBApAtB3x8zSLLbXQzrQ+UnsOPByKqx8xHhq3epJBccPt7mA+fr6ACXnpwU98CPSV2SVIj25lBjqWz6xTH5mpFxPVmCOktndPzEutVPEYVlN7vyRm2ne3N+EHXx7KKqKOl0bBw04ORZ9eoca50j5LX3dnenFMvMUDsqjshxD6CUQnfkJEPwKRcMVv2NhSRFI39rt5BDEUkS+TGjJoKIfInHBtT3X5GY7sa51X5cO+uHqxva8adqy5GODaO6ooS9IfiePL1j/DoavmVf73UVfrwzZ/nnlmQK6JssWBUwv27D2Lx7DqsOxuMTWaoPbD7oKkJmYB4Q94LTfGJu3GTn2QVRtt/qL2vJ0IxbNt7WHbh5uE9h7BldaviMYdHRlVL5ZR0iNoid2d7MzbvPpi1GPPm4QHceVa2WBlkMZs1Jvcc1lSoDwmwuz2K3qQQI7j9PbQ7aMeAlw6cnDquVWKXSjL4lBnkSJ0cqPY9OfRmCOVSOqf1EispnmQfspPBGD4eiBgusdOr2OQMW7XgoVnhJgKjxrnaPdrfO4jOs2nKqfvTUl5ctSbEG4hu3K2lT7S255uqcvUeXVrb1aj1+3Dv1fPxxkenAUzq95HREvSfieO+q+eb1j/S+IShzAKnMBiR8OXPzZHNUFvf1ozBiHkdLdKQ90pTfELchNH2H2rva1V5ierCTUQl09dfJt+KJplpq6RDGqt9uGpeEz47syYrUNZ+YYNm8sOFTdWWyRcRiwNOa4+i9dxYPVHSbdgZtGPASwM3OeF6g0+ZQkZrsqBaRFyvcLGyr4WcAFHqQ2akxM7MBMzRCfV6EZHptEaFphHjXOsepQZR9SgvrloT4h1EN+7W0hdOH3JRVV6qOkmxqtwC00xGFZltWA8A4bh69llEY3u+GZtIyLZwSP5787ULLDmOKEOeTfEJsR+jPoza+xqOqZeuq73L4wllOVYE4JHr5ftA1vp92HTNfNwt059y9ZJPw+8rUSypFyFbrF4ccFp7FLXnxuxEyUIOlBnBloDXU089hW9961s4efIkFixYgO9+97vo6Oiw49CmyNUJz/fDl0tkO1XITCQSimNqtSLieoWLlVF3OQGi1IfMSImdmQmYR/rDqt8V5YiZDczmapxr3aMLGqvw0m2X61ZeXLUmxDuIbtxd7StBe6Ahq+k7MGm4V/uMZ0ilIkqnV5aV4LYVF2IC2ZOyblsRQGWZ8fMPRiUc+ySKPT0nsvbd3FgFv6/E1DW4faLuxERCNUNtXGPRKt+4/f4T4kaM+jBq72u1xjTemooyxWP6ferZYbGxCVn9BQD3vnRQtoxy8yuH8B+vuACj4wnLJgrqwerFASf1t1J7bsxMlHRTMo5TUE/tsYB//ud/xn/+z/8Z9957L7q7u9HR0YFVq1ahr69P9KFNo8cJT3JieAQbdnbjC9/5FVY/9Ra+8MSvcMfObpwYHrHrdKeCT8tbGtP+rhTZrvX7cGFTNVpmTMPjOXwvk6Rw+cXXr8BLt12OX3z9CmxbuxQzU166XM9NjaQASWXp7DpVI3bp7Lqs4yopKLn9J0lOwFT6jdW+KyqdViswG4yq17QbQes6Z9ZWYMmcet3pz1y1JsQ7iJaDNZVl2PylhWgPNKT9vT3QgM1fWoiaSvOGuUidfiY2hlueewdL59Tj6ZuX4amvXoKnb16GpXPqcctzb5vq4TUcHZXtC7O/dxDb9h7GcNScLM2HjrOSqKR+b00NDLABt99/QtyIUR9G7X2NxMezdFiS9kAD6quUj1lWou6+R2JjsvrrT6GYol/77rEhXL1wJrr7hnDLc+/gth++h85n30Z335DhiYL5Iunf5uKHiDoPpd/wkjl1iv29MmMMqeTD5/MCwjO8vvOd7+CWW27BrbfeCgD47ne/i5///Of4/ve/j61bt4o+vCn0OuFOKscyGtk2GxHXE6G3Kuoul1Wm1YcslxI7MxMw85FOm4/sKKuvk6vWhHgH0XKw1u/DiDSODStb0hqzR+LjmGYygwkQr9PVJmUB5gL8EWlMdfEnohHw0cJpJSO5Ulup0QjZgmCpSNx+/wlxK0Z8GLX3tfk8P7asbsU9u3rSspXbAw3Ysrp1amCK3DGVgiFJpPEJWf1185Dygk1ne3PWxEjA/ETBQsfqiZKsiDGG0ICXJEl49913cdddd6X9/S//8i/x1ltvZX0+Ho8jHj83tjwUCok8PU30OuFOe/iMpofa2TwuAUzOrTeI3IRKNTJL7IDJ8kOlUhWjEzCT3zUzbTDXMpp8ZUdZmTZstuQ13+XExF04Tdd4kVl1lXhszSIER0YRGhlFbWUZairL0jJ/zfCpukpU+kowEJYwPp6Av6wUc+r9ljUG/+BkCE/fvAxNNeUIx8YxraIUp0Ix3PnCAdM6XWSAPxJXz1DS2q4HJ5WM5IrTmhobwc33v5CgnvEeRvwkrff1iZuWnPMXKkpRX5XuLygdU0mOdbQ0Yv8R+UUPNfQM3QJgyNYudBvdyomSZn0+u38LtePZeS5CA14DAwMYHx/HjBkz0v4+Y8YM/OlPf8r6/NatW/Hggw+KPKWc0GsYOa0cy6mCxeqa41QBEoxKsr+V31eCTdfMR0lx0VSQLRwfwwMvH8LrH/TrOo8EgImE/mb0Zq7TyHfzmR1lVZDUzKo1a9lJrjhN13iRvsEI7t7Vk7ZanFy5ntNQZemxzC6gZBKVRvHDW/8cD+05lHX+P7z1zzEiWVMWKCLoMq1C3azT2p4rVt/7JKLsGK9kSNm5QEmMQT1Dkqi9rzNqKnQviKfuT0mOPfClBbh2W5fs97qPDyv2bNZieETC5lcO5Wxru8lGt9N/FtEXDpj0+ZSuw+7fQul4j69ZhASAO398IK2sU+S5FCUSGp68CU6cOIFPf/rTeOutt/D5z39+6u+PPvoo/uf//J/4wx/+kPZ5udWQ2bNnIxgMoqamxvLz0/NgnxgeUTSMkivVR/rD+MJ3fqV4nF98/Qpc2FRt+fnL4VTBEoxKWZMokixvabSk7DPzt/L7SvDs+ktxpD+CppryqQaMp4Ij+FRtJW5//r2pbK1kYGzZ3HqE42Oo8pXi3b4hPLzn/anPJMeWy2V5JX9jM9dp9LvBqIQ7dnYrCk03TThMvpN6V63teK68RigUQm1trTC56gbs1jWFxqlQDF//37+XLa1rDzTgiZuW5GzgZyJS1/UNRrLKTJJYFbQ7OTyCNz46jaZpKbopFMOKi6bjUybO/9hgBPftym6EC0xOgHxk9ULMNXnuou0MO+yYXHUNyQ3qGeoZcg4zgRQ9GTKpcmwwImHlE/I+qd9Xglc3duD+3Qez/Np7r56Hf/fdfYrn8fytl+ErP/ht1t+1/BMzNrqdAah8+M96YgyZaPl8W29oxV0v9mRdh9zfU7db7S+p/fbf+veL8PLvT8jbKS2N2J7DuejVNUIzvBobG1FSUpKVzdXf35+V9QUA5eXlKC8vF3lKU8g92FfNa8LmLy1AbHQi7eXSSh23K0Ve68V3Ui+xTOwo+8xMGz7P78OJYEx2WtWGFQH8xysuwH9/7TD8vhI8uXYpntl/FHe/2JP2uSfXLp0KcClNfEz9jc1cp9Hv5rpi7dQMQCD3VWunlRMTd2CnrilEhiKS6gSpoYhkKuAVjEq4f/dBLJ5dh3WXn582TeqB3Qfx7RsXm3rvI9K4bLALmDz/iAWNzRMAXj1wMs3g62hpxBUXTTe137rKMmxYGQCQwL6Ua+gINGDDygDqTPaoEm1n2GXHMEOKiIZ6hgBiqz5yLXdcNrce9f4yWb9W7XsdLY1462N5nfjm4QEMRiTExiayWrmEY2OGbXQ7A1D58p+NtMBR8/m2rG7FAy8fkr2OY4NRW/0lNf+subFKsWH/vsMD6D8Tt/x+Cw14+Xw+/Nmf/Rlee+01rF69eurvr732Gq677jqRh1ZF7sH2+0rw15+bg2+8cCDNUE++XGoZWiJS5DODEhWlxZpleE52/u0q+0wV/scGItj2S/lpVQBw519djP/+2mF0tjfjmf1HFT+XGuDa3zuIzrbmqc9k/sZmrtPMd/X29HBqBqBRnFZOTAgBQhpTBrW2azEYkfDVy+biZDC9Ae+s2gr82Zx6DEbM6bqwxvmF4+bOPxiVcOeP/29aQAqYNPTufOFATqubmdT6fZhznh9fXDQL69qaER+bQHlpMfrPxDH3PPM9zkTbGU62YwghJBfMBFKMflevTyr3XSNlkn5fCRIJZGV1twca8J//4iLZ7yRRstHtDkCZ1TtGEwmM+mRKPt9gREqLE6QyPGKvv6Tmn42NqxcXBjXO1QjCpzR+/etfx9/8zd9g2bJl+PznP49//Md/RF9fH772ta+JPrQicg+2UtBD78tlZRNRuRcgOSHwrSODU+V0mefmZOc/H32mtKZVJVFr1JgZ4AImpzilNsBP/Y3NXKfZe6S1Yu3kDECjcLojIc6jRqNPlNZ2LcYTCVSUFeMnPSdls3e1ei5qUa1xftXl5s7/VCieFexKsu/wAE6FzK1uzqyrxBcXfirNHlk2t94S+S7aznCyHUMIIbkguuoj+bnMQItRn1QtkJLZyiVJZ3szNr98MMvf6uodxN9fOaF6PCUb3e6FDzN6x2jQyqxPJufzqU1+LC8tVtwGWO8vqfln/nL1QXN+n/p2IwgPeP31X/81BgcH8dBDD+HkyZNYuHAhXn31VcydO1f0oRWRe7DVgh56Xy4rUuSVXoCu3kEkkF1Ol3puTnb+G6t9io0SOwSVfWpFkJPCOz6mLpAzt9f7fYoZf2bKW0WXxnpx5dwLE7cI8Rr1VT60BxoUe2DVV5l7L0uLirD9l72KWbmPXLfQ1P6LMBk8k1swaQs0oMhkk3at1UsrVjdFleyJtjOcbMcQQuzHyW04tBBZ9aHVRN6oDsi1TPLyCxoU/edffzyo6Pup2eh2L3wY1TtmglYifDK161AbWCDCX1Lzz0qLi1RtrCqf9eEp4QEvALjttttw22232XEoXcg9EFpBD6MvV66CWu0FkMs2Sj03pzv/t59dec9ckb99RcDQ/k6FYlN1z7X+UlSWleLeXeca8j198zLV75cWT3otWlHv1O1a99FMeavo6VFeXDn3ysQtQuRwq6E/o6YCW1a3ZjV+TzZ8N9uwfmR0XDV7d2TUXI+tomJg/Vldm6mv1rc1mw54aa5uamzPJ9UVparBTK3sOC2cbscQQuzD7W04RFZ9xEcnhFRsKNkd31yzCH/8JIqq8hKEY+OYVlGKcHwMZSVF8PtK0NnejKWz69J6av7od3340d99Hg+9cignG93uhQ+jesdM0EqET6Z2HR+eDGHrWbvMDn9JzT+rqyzDHStbAGTbWHesbEGd3/qFLVsCXvlAzVGQeyBEpPoZEdRaL4BcYC55bk52/gfCEjqffRud7c3oTOkr0n18GJ3Pvo1XNrTndH6ZI+83rAygu28o7cXpPj6sGEHuaGnE9GnleOm2y1HvVxYQbYEGdB8fBjBpzD9y/ULDKcF6rs/K0thMvLpyLvKeEZIv3G7oz2mowhM3LTnXjLWiFPVV6s1Y9aLVNF6p9EIvdZU+fOt3H2LpnPosffWj3/Xh0dWtpvY/rVw9aDTNZMkkIC5YGomPYV1bMxLINlTXtTUjYrK/Wa3fh0euXygbLNWjfwkh3sALbThEVX1oNZE3WrGROT14KDqK3x39BCsvmg5pfALb9h7O6tP1yPULsf0rS/F019G0TK+2QAMeW7MIE4mJnG10uxc+jPrPZoJWInwytet46LqFmGmzv6TmnxUVFeGaRbPSbKz+M3Gcb0GvUTk8GfDSM9Ui84HoPj6saIAaebmMCmqtFyAzMJd5bk51/uWEQlHKMnkukexToRjuSQl2AfIlqTu6juLJtUsBIGsQQXLka3I8u5yA6Ag0YNO1C3B0IIKnb16G7uPDeHjP+7omgJkpJxFViuLllXNO3CJewguGPjCZ6WVFgCsTrUmDtSYnEVaUFuPW9guw7ZeHswz4O1a2oEJjgUyL2Ni4atAoNmYuYHdyeARvfHgaTTXpTsuVF01XHHWul+DIKDbu7JZdvNq4sxvP33qZuf1HJTy0530smVOP9Rn716t/CSHux4ltOHJdSBBV9aHWRB4wlh0UjEo4PhRFIqMHZiKRQHh0HI/+5H3ZPl2/PjKIVzP6aQKTuq0IwDf//eKcbfR8JHAY8Z/NBK1E+WRa12G3v6R0PJG9RuXwXMBLr6OQOQq0trIUX142Gw++cgivZUxCNPJyGRXUai9Ae0q2kdq5GX2YRZbP1FaW4cm1S/HM/uwVgOf/9s9RWVaM7r4hXccdikpZgUm5zLeoND5lmN/7xXmQxiYUBVgRgFWtM3Hz5eejqrwUkfgYuo8P4/rv7c/KFnBjryvA2RmAhJBzONHQdxJN08pVe0I2TSs3tf+BsITO56zLSM4kODKmGjT6fzs/Z3zfUQnHBqPY03MiK5jW3FgFv6/E1LnXVJQhKo0r9mwxmyk8EJ6cMqU0acqqZ9+t5cKEFApOa8Nh9UQ9M1Ufak3kAWNyOBgdxfhEQnYYzAXTq7F4dh32/uF01veaaioUh7B09Q5ixGDGtZn7ZlS+5+o/mwla2eGTJYBJB9eh2Bl881zAS6+joCS4tqxuxd1fnIfQyLmXCwCO9IdzenGMCmq1F2DL6lZI4xP4i4ubLM/cEl0+U1VeKjsFc3IF4A9YMqd+yoDWOu4ZmZHxSiWpScN89ZJPY/6sWtnPBKMSvpFy7U999RLc9sP3FK/Fjb2ukjg1A5AQNyLKaXaaoe80av0+PC7QUAyOSKpBHbNN5at8Jar7NzOhaCgqYdsvDys29H/UZFmg6ExhO559t5cLE1IIOKkNh4iJenrJtYm8HjksZ7uMTSRUh8Hc+VcX47+/djhrX6J6YAPG7pud8t1s0Co12SK1rM8M1G/yeC7gpcdYUhNc9+zqwba1S3HB9MkpfEYfHDOC2u6ghB3lM+HYmGKT4a7ewakGwXqOKzcSvvv4MFZePB3zZ9VmNU388GRIVfhnBkntHt1qNyz/I8Q8Io0KJxn6TkWknvRrTAgyOzLb7ytRnVBkZv8RSb2hv1b/My1Er0rXVJQpNkDe0XXU9LPvlXJhQryOk9pwOC3rOrnok9pvq6KsBKdCMay4aLrquSjZLneuulhVdyjhJJ8pH/LdqC2SmWyRyvKWRkPnSv2mjOcCXnocBSXB5feVYNHsOpwMxvDxQATV5aV459gQ3j02lPY5PQ9OLoJaKUvArofSDkGeazP+zOOm3qPKshJsWb0Qj/zkg6mU3h/9rg8/vPXP8dCeQ2mr5smpYGrnn3luas3u3d7rihBiHtFGhV2GvtvLukTpyWKNkdklxeZqBIpRhI0rA7i6dSZm1FRMOSt/Co7gwunVKDZRgxCNazT019iuB5HBxsZqH3asuxTb9mb3T9ux7lLTz77THFdCiDxOasPhxKzrBIBXD5zEvt70e3PFRdMByOt3AIq2y+0r1AeOKJUm9odiii0GjGabGf1t8yXfjdgiIs6V+k0ZzwW89DgKHw9Esrb5fSWKPaaeXLsUG3d2p9VLaz04egW1E1IP7RDkuTbjTz2u3D3qCDTi5Q1tiI+NIzQyjtrKUgxF4/jwT2fS9tHVO4j7Xjqo6oBmnptWs/tCFRaEkElEGxV2GPpO0D1OpbS4aCrrOLOXyfq2ZtMBr2BMQn1VOX66tzet90lyUEooJgGoMrTv6gp1s05re66I6BHygzc/TpuQmczw+sG+j/HEjYtN7duJjishRB6ntOHIZ9a1auCqNztw9cDug3jg2gW4e1dPln5/6LqFWUkcSbT0Wp2/LGu4W3ugAe2BRlzx2SZD9orVdoib5LuIc3XT9QP2Lrp6LuClx1GoqZCyvtfZ3qzYYyq5PbPfhtaDk9kYv6ayFPX+c2PZnZJ6aIcgVwtEtmU04089rtI92tc7gM0vH0rr/dUeaMAPb/1zfPUHv8FA+NxvrOWAZp5bVBrHXS8cwONrFuGeVfMQkcazfjtCSOFih1Eh0tB3iu5xKlXlpXjx3ePobGvGXasuRjg2jmkVpTgViuGFd4/jgS8tNLX/mgof7nmpJ8ve2Nc7iAdfOYQt17ca3ndlWTE6Ao1ZjhAwuVBUWWZuwiQgNlg6GJHw5cvmyC4+rm9rxmDEXDCZ5cKEuAsntOHIV3mlkqxVC1x9dmYN7n7xQFYj+TcPD2DT7oOy/iwAdPUOKA+DCTSipqIMT9y05JxPW1GK+qpzfpGavZJrtpkeO0Q2WKIxodlJ8l2ELnKTfrN70dVzAS9A21GQE1xLZ9cpNpDd3zuIzpQeU0m0HhytH1NvaaUVUU+1KKodglwpENl+dgz7xp3dssdVy6TI7P3V1TuIh/ccwuNrFuGW595J+6yaA5p5bn5fCR5bswg7MgKgzH4gqZhZmXB7KVmhY5dRIcrQtyvtXfRzLmr/0fgY/tNffBYP7TmUpgPaAw3YdM0CROPqpR9aSOMTqr1SpHH1JsBq1Pt92LAyACCRlT22YWUA9WYb+gsOlo5NJPD8b4/JZng9/9tjuHvVPFPn76S+QIQQd5CP8ko1WasWuFLzZ/cdHsC6y8+X3faPb36M3Rva8M7RT9CUUmp/KjiCWXWVGBkdxwXTqxUX/pXsFSVf+N6r5xm2Q9QGz101rwmvyUz5NSvfrbY3ROgit+i3fCy6ejLgBag7CnKCS2vKROZ2rQdHz48plyWgVFppJtiiFXizS5DLBSIryoqx+eVDaeWiqceVKz9NJfN36eodxJ2rLs76nJYDmnpuE4kEHnrlUJZDwuwHZ+CEYJGZlQmWkrkftxgVStg2Ce/HB7L6i1j1nIt8j0YnElnBLmBSvzy05xA2X7vA1P617q/cJGK91Pp9mFVbgS+2zsS6swGj8tJi9IdimFVbYVpWig6WJhIJfOWyuYoZXhOJhOF9A87qC0QIcQ92l1eqyVq1wJWWP6vE5Rc2ICqN4yc9J9PKFjsCDVjf3oywAbtAzRe+eWhE9btKelJr8NzWG1oRH5uwVL6LsDdE6CK36Ld89BrzbMBLi0zBVVGmPhUptceUngdHz48plyWgVFppNNiiN4pqlyCXC0R++8bFisc10vsrHEtvrKjXAU2e25H+cFYqcJJCb/qXb5wQLDKzMsFSMm/gFqNCCdEZasGolBXsAiaf8ztfOIDtJp9z0e/RxERCNQNrfMJc0EXkFMhgVMKDe97HxTNr0JSyEv9vwRge2vM+vn3jYlP3RnSwtAhQbS/xwDXmgo2Ac/oCEULchZ3llVqyVgmtsr7P1FdmLdgtb2nE/dfMx9275EvtJwBDpfZqvrAWVeXyelLLv46NTlgq30XaGyJ0kRv0Wz56jRVswAtIF1zBqKS6Yh+YXo2Xbrtc94Oj58dsbqzKqbTSSLAllyhqvurk1Y5rpPdXdcU5Z8GIA+q2pn+FglOCRWZWJjhBxTu4wahQQnSGWv+ZuGwPKWByZbr/TNzUfRL9HkUl9QyrqMK0Kr2InAI5EJbw+gf9eF2mpCO53ck9sCYSUA02ms3wSuKEvkCEEKKElqxtqinP0iNtgQZMqyhVnZr4qZoKWdul/0zc8lJ7NX+q+/gwOgINsgkGbYEG+Erk+03q8dEubKq2TL7bMaTIjuQSJ1GtEMxMohTsNENBB7xS0Vqxn1lXibk5TE3SYxQqlVb6fSXobG/G0tl1UzXUPf82jEQCiI+No7tvSHcpl5JgSB4jub/ayjJUlZciHBtzVF+hXHt/tQcaUFdRllNwMpN8N/1zQsmeE3FKsMhMQJTBVG/hdKNCCdEZasMj6s9xUGO7FqHYqKyefK9vCDu6jpp+j2or1a9fawVdC5FTIEXLmMZqH66a14TPzqzJuvcfngyZDpaKDjbaBfU48SqF/Gzbee1qC1MdLY34xQf9ab0Oy0uL0X18GJ3Pvo1//o+fx4MvH1LV75nnrdVCJhIfy/n6ayrKFHX1j37Xh+dv/XM8mNE+IKkHgyPy04rt9tGcare7+T30lRSrLvopBTvNwIBXClau2OtdQc88ZqVMDy+/rwRP37wMT/2yF999/XDafrRKueQEQ2afsNR/O7FJu9zv4ispwuZX0nt/tQcasGV1K2Y3VGF2g7GR7kB++/M4oWTPqThF6ZhRtvkOphKSRGSGWpVGSZ6Zkj1gMuAk1+uyLdCAJ9cuRY3JgJRoHdBQ5cOWVz+QdVZ+9Ls+PHHjYsP7Fi1jav0+bDpb+pJ675P61+zzIzrYaAfU48SrFPKzbfe1qy1MPXTdQnzxyX2KCwBFUJ+aKIeW7qj0lWDDzu6crr+x2ocd6y7Ftr2Hs3T19q9cgtf/8CdZPbhxZzde2dCuuE87fTQn2u1ufw+HRyTVRT+lYKcZPBvwMhr5NLNin3rM2soybFndint29WiuoKce81Ross9G6gPQ2d6M7b/sNdTXS04wZPYJs7pvmFlOhWLnxt5WlqLePzn2NvMcttywSHE8rhny1Z/HKSV7TsUpSkdL2ZYWFylmYbq92TnxFqIy1Kp8paqrd1UaPaw0919eqtjnqQjAEzctMbV/O3TAf1x+AXr7w1P/LioqwqdrK3BFS6Op/YqWMcGohHtfOijb0P++lw6a1lPVFaVoDzSkNU1O0h5oQHWFs81Wr+hxN2cPEDF45dk2gshrV3vXlBamAKDtwgbFTNuGKh9iYxMYHZ+ANJ7A6MQEYmMTqFU5Dy3d8V7fsKHr/97ebP91f+8giouK8KXFs/D//PiA7PGUdJXdPprT7HYvvIfV5WVY+0+/RWd7c07BTjM423IwSD4in3LHvGpeE7be0IrY6ITuCHs4NpYlGMz09ZITDJn7s7pvmBn6BiNZTROTK8dzMrK2ZtRUZAW4rDLS8tGfxykle07FTKDJSpSUbUdLI25bEcCqlFW3TLnj9mbnhOihzl+GO1a2AMhevbtjZQvq/OaC03J6MklX7yDCsTHMqDF1CBQDuG1FAP/PX30W4dg4qitKEYmPwXix4Tk+iUioq5J/1+uqfPgkYlzWi5YxovVUJD6GdW3NSCD72VnX1oxI3PgESzvwgh53e/YAEYMXnm2jiLp2Pe+a0sKUUqbt1tWtCI6M4t5dPWn9sToCDXhUxpdKoiejTA616x8IS6r9PO+7ep5sA30tXVUEYFXrTNx8+fnnJhGfiSt+3gy1fh8eX7MIb3x0Gk3TyqeCi6dCMay4aLrtz7wX3sPGah+Wza2XjT2ICiJ6LuCVj8in0jFf+6Af8bHJaREXNlXr2pdc2ZbWiFmtUq7M4M1oxoQps/u3ilOhmOyEkK7eQdy7qwcPX78QQ1HlQJbVRprd/XmcUrLnVMwEmqwm852qKi/FO8eG0Pns22kp5nJyx83NzgnRQ63fh7nn+XHNollpq3f9Z+I4/zy/6WddtKwMRiX88ZMotu09LBuwq/SVmLqGoiJgIBTHnp6TWfs/v7EKs2rNZSrPqqvEt25cLJspbRbR9344KmHjzm7Fld//dctlpvYvGrfrcS9kDxAxuP3ZNoOIazc78Vsp07bryCBePXAiqxn8vt5B3LvrIL5902JFXaBkn/5xMKLaP1Hp+rXu24g0nrM9HIxK+IbMfQMmbX8RMioB4NUDJ9OCd8tbGnHFRdMtPY4ezD6LTsjezcfiv+cCXvmIfFp5TLmyrfJS9eZtekq5UoM3R1LKKKzavxUMRSTFVft9vYM4cjqCW557B0B2QMMLRppTSvacjJlAk9VkvlN3v9gj+zk5GeDWZueE6GVmXSW+uPBTaYbssrn1ljz3omXlcHQ0K9gFnMs42nK9uV5VEwnItilI/vvh6xYa3jcgNkNH9L33+0oRlcYVs87N9n8Tjdv1uBeyB4gY3P5sm0HEtYua+N00rVx28iEA7OsdwFBUUl38kLNPq8OS4ucB5evXO8AtF5lit4ya8i97neFfmnkWnZS9a/fiv/Vt8PNMPlYgrDxmsmwrle7jw2gLNMh+3kjqX+Yx1PbfYXFqYTAq4Uh/GN19QzhyOoxg9JwQDcXUSxVSM9GSgib5fT0C0Okkp19tWBmYHFLw1UuwY92l2LAygKvmNbG/01lq/T5c2FSNJXPqUVxUhLtf7JFdebLzdy/klU9CtEgAsKQW8CxyejKJFenwEUm5ZHJ/7yAiGpMEtRgZHVfd/8io8UmEWos/qTrXCKLvfXFxkaI90hZoMDXB0g5E3x/RUJcRJdz+bJtBxLWLmvitWbUzkrv+0nP9cv6dqPvm95XI+kp+X4nlMspp/qXReyraNjBCqj93YVO10MCh5wJe+ViBsPKYyTS/1Id5R9dR3LGyBR0ZD7jR1L/MY+zoOor1bc1ozzAy2wINuH1FIKd9q3FieAQbdnbjC9/5FVY/9Ra+8MSvcMfObpwYHgEA1Gg0o83MREsVNF4w0pLTr7r7hnDLc+/gth++h85n38bv+4aw6Zr5jlxVVQtgGvlcrjjldy/klU9C5NCS92aQ05OAdenwEZXSDQCqpR16iMbF7V+0cV7r9+GR6xdm2QvtgQY8cv1C0/e+tLgI69uas4JeyelNTg94iX42RUNdRpRw+7NtBhHXbuZdqy5X9pe0qnb85blnyapd/zfXLEJEGpfV91Fp3PL7lpzSnOkrdfcN6ZrSnKs/4hQ/I4nRZ9FpgTu78VxJYz6mKVh9TKU0v+0Wpv6lHmMoKiEcG8P6tmZ0tl+A2Oj4VM+Mzmffxisb2k0rMj0lh/VVPsXpTG2BBnQfH876e1LQeMFIEz39ymr0psa6ubxGL06b4kJIPrGjxFxk09o6DYO5VmO7FtMq1U2vaSYmEdrR3+yhPe9jyZx6rM/osfXwnvfx7RsXm/ptG6p82PLqB7Kj6n/0uz48ceNiU+dvB27u00hdRtRw87NtFquv3cy75ispVpyEfCoUQ0dLo2xwY3JKsrGycLWJkRt2dsvq+zvP6nsr75uZKc1G/BGn+BmpGHkWnRa4sxvPBbzsaoSW2fRt6w2t2PzyIbz2Qb8lx5SraU5Goa0qD0keo7tvCOuefVvxc1a8BHoiyxc2VWPL6lbcs6snLeiVXNnduLM767tJQeP2UeaA+br0U6GYkCbFcuh1aEU7vk4xzjl9kbgRUc1LRffYEN20tmlauaLD0NHSiKZp5Yb3DQAlRUXoCDTKTq/qCDSipMi4gldb+QcmnQUzDIQlvP5BP15PsXUyt5t9hv5u+QXoTek1WlRUhFm1FYplHE7ErX0aqcuIFm59tq3Ayms3864NReNY39YMIHua7czaSmy6Zj4efOVQ1rYNK1rg9xnXAXLXf6Q/rMu/U2vAr2SHyG2LxI1NaTbqj+jxM/LRCD7XZ9GJgTs7cX4UwACiVyCUIsRbVrfi7i/OQ2jEvmO6JUtGb2R5TkMVnrhpSVrgprtvcjpTZplHakDD7aPMAXPR977BSNaEy/ZAA7aojCA2g16HNlfHV05pJI8np0icZJwX8sonEYNII0qkThG9kig6oJYcQy5KrpQUF2F9+/kAEllj49e3n2+qbM9XUoyVF0/H/Fm1WDq7bmqE+nt9Q3j/RBC+EnOdLET/toMRCeH4GF7tOZm2gDV5b5oxGGHTdNFQlxFiD0bftYqyUmzc+TvZaba3P/8eXrr9ctyxMoC7Vl2McGwc0ypKEY6PQhqdQDg+hiYLr8GMTlCyQx5fswgJQHbbA19aAL+vRLH0X+l4ekv65GwuNT8jKo1nLcDlqxG8Gk5JEMgXngx4AeJWINQixPfs6sG2tUtxwfTqnPep5tTYkSVz1bwmfHZmTZaB/OHJkCUvQS5BtRk1FWmZSTUVZfjp3HpVxyM4Mqo6yvz5W509yhwwHng8FYplBbuAyZWOe3b14Imbllie6aVXwQVH1GvCgyPn9iOn+DpaGnH7ikDaFMZMReIk47yQVz6JtYgMSInWKaKzjOxIzZ9VV4lv3bhYSNZsQ5UPW1/9AIvn1GNdhr7a+ds+fNtE2V5wJI47/2oeHtpzKG3SYXugAZuuWXBWJhtfBBH9245NJPB0V3a5yr7eQUwA2HztAlP7J/qgLiN2ko8MGadg5F0rLi7C0jl1stNsV148HaXFxdi+t1d20SA0Ym3pmlHfRc0OeeOj03j1wEnZyYibXz6EzvZmxUm+isfT8EeGohI2v3JI0ebKtZwzHxMc1XBSgkA+8GzASxRWryzLOTVXzWvC5i8tQGx0AqHYKCp9JcJXszddMx937+rJMpC3rDY3fj2JmciynoBGTUWZ6ihzI1lqdijg1GOcV2XsHg1FJNX03qFI+gjiXLOo5NCr4LRSp5Mj5pUU377DA5hIJNKUm5wioXFOvITogJToDCm1/iJtgQbTWUZ2ZCWfGB7BnT9OH0VuVcCx1u/DQ9ctxBsfnZ76W1FRET5dV4n/8Lk5pu79tAof7tst3wvyoT2H8Mh1Cw3vGxD/205MJFQnWI5PJEztP0khO9iEOAmRizteJTncA8iuavnPf3ERHth9MKvFS3LRwKwOyMSofzcQlvDusSFsWBnISraYUVMhW/IPTPoFf3/FhbL+ntrxtPwRaWxC0+YyUs7pJL3ipAQBwN5WPAx45YiVK8tyTo3fV4K//twcfOOFA1NC7KmvXmLZMZXOQ61Z+sPXLcQnUcmUUWg2sqwV0LA6VdMOBZx5DL+vBDvWXYoEIJveq1T6Nzau7gCEYufKOZWO+b29vTk5dnrvd3LEvJJzlCzdUXPA9/cOovOsYk/iREVCiFWIDkiJzpAaHpEUjfH1bc3ms4wE92wMRqWsYBdwrgnvdgtWbRNA1gr28pZGXHHRdFP7jY9NqAaMtEbWayH6t41K6u0HzE7IBOzR73Ya8oS4FTsGnMjh9vczmSUsN9wjGh9PK5VPxQodkIlR/y4cH8WTa5fimf1H04JXbYEGtF+o3q+xvKw4ywfROp6aP9IRaMRbH8vfMzWby42N4J2SIGB3Kx4GvHSQGlyo1JhukcvKspxT09nenDV9QmvErNnVbC3nqvd0GLc89w4Ac0ahyMiylamadihguWNEpXF0Pvs2Nl0zH/dfMx+R+JjsPco01p++eZnqsWrOOn9yx+xsb8a2vYezFIDWteq932qrUKkj5rWUhpyCdqIiIcQKRBtRojOkqsvLcMtz70z2wUrpIXIqFMOdLxzAP//d503tX3TPxv4zcdXV5f4zcdNN9+98QT6gZlbHnNG49rDJe1NdXoa1//RbxfYBr2xoN71/9e0WBDMF63e7DXlC3IroxR05vPB+1vp9ePC6hbjrhQNpwaLlLY24UmPRxKwOkMOIf1dbWYZv/vxD2WmLt10ZUD1eXaUv55YDav7IfdfMw+qn3lL8rpLNVeiN4I2Sj1Y8DHhpkBlc2LAyoLiynGsmkZxTs3R2dk129/Fhxai0FY3mcgk2mDUKRUaW1Wqsj/SHdZcu2KGAlY4RlcZx94s9+MXXr8CSOfVZ2+WMdbXnoz3QgPqUksXMY8o9b0m0rlXP/a4uL8VQRMLnms/Lco7++XfnetVoKQ25oC8VCfEqoo0o0c1LG6t92P6VS7KC6W2BBmz/yiWm9y+6Z+OwRo+ToMkeKCJ1TF2l+rNRq7Fdi8ZqH5bNrc+5nEQvZSXqWcFlJeZGVIvW7/kw5AlxK3ZnyHjp/VSywU8EY6rfM9tnUYlc/buYSjbyrz8eVJyUvLylERVlxdj7h340TStHfGyyEX933zCuvGg6ZiokZKhlxQ1FJNXsYSWbq9AbwRsl11Y8VsCAlwpywYUdXUfx5NqlAJAW9DKSSSTn1MhlsqQec7/JY+o9j1Qygw1OLifLFLhGShesUMBa/UGMHkPOWFd6PpIrVkmhIXdMrdRmrWvVc7+VGs+nPrtqSqMt0IDu48Npf6MiIV5GtBFlR/PS7+3tlV25LS4qwvaz8sooIno2plKlkcnt19iuhUgnr2lauaKj0NHSiKZp5Yb3DYh/dgYj6iWTgxEJzSaqPkU72Pkw5AlxK3ZnyHjt/ZQLMp0MxVQXDUwMAVYl176IoRHlTLMdXUfx8oZ2PPTKoSw9s2V1K/5teAR7DpzI0hHNjVXw+0oUK1OUsuLWXjrbkM1V6I3gjZLaasfIdiMw4KWCXHAhKo1PrSzfd/V8xEbHDZfmyTk1cpksqcfcZPKYes8jiVywAXBHOZnR0gWzClhPkM3oMeSM9dTn454vzkMkPo6ailLUV/mypl1mYmW5rFrj+SIAP93YgaGoJPvsKimN1GBZEqsVCZsXE6dhhxElssR8ICyplgSaXTARHRCs8pWqOgxVGs1vtRDp5NX6fZOlpIKfHVETLKsrSvH/2/E7xey9F2+73NT+RTvY+TDkCXErdmfIFML7qbeViJUYSS6oUem1GZXGMT4xIWujBKOj+B+/yG7Fkvz3luuVh62p2T1Gba58NYJ3s++i9tvr2W4EBrxUUFoJTK4s/8XFTbJlZ3qRe8G6jw/LlkxGpXEcOD6Mv21vtvyBVnrRk8Jx487urO+4oZzMaOmCGQWsN8hm9BhKxnrymVy95NNYMKtW9jNyx7SyXFbrfo9NJFTfF7USyVc2tAtRJJwORJyKHUaUqBJz0Vk0ogOCdf4y3LGyBUC2w3DHyhbU+U32OBPcdF/0syNSbpaXFGPpHPlS+7ZAA8pNToEU7WDnw5AnxK3YnSFTCO/n9OpyPPbTP8iW7v3od3144mwrEaswmlxQX+VT1YN1Z+2TzO/+2/CI6mCWiMbgEyW7x4zetLsRvNt9lypfiepvr5VlbwT3v9kCsSPVNvMFq6ksw5eXzcY9u3psTY/MPI+q8lK8c2wIG3d2Z9U1u6WczKjTZUYB6w2yGT2GGWNd7pg7uo5ix7pLUVxUpDkZUgsrnFwlpSHiuc/XdCBC9OKUaTq5kg/dafUQlLnn+XHNollpDkP/mTjOP89v+hiim+4D4p4d0XJTdEmjaAdby4lL9tQkhExiZ4ZMIbyftX4fHlIo3RPhRxpNLphRU4Etq1txz66etN8jsx1LJhGNSb1mJvm6webygu8yPCJh0zUL8PCeQ1m//f3XLkBwRMJsE9Oe5WDASwW7Um3lXjAzwt9ommPmeVSVl+Knc+ttr0u2Kk3TjNNlVAHnEvQxNNXEpLGudMztFhgbbptWko/pQIQUAnaXqSQAwOIqjZl1lVh5cVNa2d7CT9daUrYnuum+SETLzepyjZLGvzdX0giIdbCNOnGEFDJ2BRoK5f20M4hoZrF7TkMVnrhpyTk9K9OOJRPRg1nsJlef1wu+i99Xhr/+x1/j8TWLcOfZSd7VFSXoD8XxlX/6jelJ3nIw4KVCPpvRGRX+VqY55qMu2crzN+t0GfkNcg36GDmG2d9FVBaV26aV2D0diJBCwQ7dKTqlX+T+RTfdF4louVlf5cMlCiWNVmZgiHSwjThxhBB7KJT3064gotnF7hk1FTnde9GDWewkX4PV8k1jtQ/zZ9bglufeydomyl9kwEuDfDWjM4KINEc70zutPv98BCyVgj5+Xwk2XTMfE4kEuvuGTDcYdGLardumlbgtI40QNyFSd4pO6Re9f7ctDqRSU1EGv68Ene3NWDq7DvGxCVSUleC9viHs6DpqWm56JQMjVyeOEGIfhf5+WtnwPB/6bMOKAJBIYF+KjugINEz+3SXka7CaE8iHv8iAlw6cGFyQI59pjlYITxHnb3fAUu4l9vtKsGPdpfje3l7c/WLP1Gfd1GBQL24KELvZ6STEDYjSnaJ1nej9u21xIJXGah92rLsU2/YeTsvCags0YMe6Sy2Rm4WSgUEIcR5unn6nB6uzl+3WZwNhCeuffRud7c1Yl1H2vv7Zt/HKhnZX/F75GKzmJOz2Fxnw8hD5SnO0Snhacf5KispO4Zf5Etf7fbjvpYPY1+veBoO54JYAsZudTkIKGdG6zg5d6qbFgUx+8OaRtAlgyQyvH+z72LIJYIWegUEIsR+3T7/TQlT2sih9JufTheOjqi0B3FDSB+RnsJrTsNNfZMDLQ+QjzdFK4Wn2/O1QVHpXflJf4iP94axgVxK3NBg0i1NXzNzsdBJSqIjWdaLL9jIR0XRfFKfDcXz5srl4Zv/RrAyv9W3NOB2OU34SQlyHF6bfaaGVVTQYkaY+Z3bwmVmUfLqHrlsIv69EcRqjqJI+q/2YfAxWK2QY8PIQZtMcjbzMVpZ+mDl/OxSV0YCaFxoMmsHpK2ZuyUgjhEwiOqXfjrI90XJR1CLD2EQCz+w/iv0pvVMATP37/mvmmz4GIYTYjRem32mh5o/4fSVIANiwszvv9rqaT3f/7oPYdM38tBYxSUSV9InQ143VPlw1rwmfnVmTtbD24cmQkMFqhUxxvk+AWEcyzXF5S2Pa3/WkOZ4YHsGGnd34wnd+hdVPvYUvPPEr3LGzGyeGR1SPaWUwx8z561FUZtAKqAWjyvv3QoNBo5i5b4QQIocZXaGX7+3tlQ3qfO+X8mUUuSBaLhrV53pIJJB1X5Ls7x3ERML0IQghxHYKYXFazR/pbG/G5t0HHWGva/l0l8ypE6r/UxGlr2v9Pmy6Zj66+4Zwy3Pv4LYfvofOZ9/G7/uGsOma+QxmWQwzvDyGkTRHM9lRVgdzjKZpilZUZlZ+nNZg0M7ywkJYMSOE2I/IlP6BsKRYhr7Poqb47x4bwoaVAdmSSTP7F53tHImPmdpO3IFT2xAQIopCWJxW80cuv6BBsS+WHnvdSpmh5dONSOO2lfSJ8mOCUQn3vnQwawGpq3cQ97100FUltG7QFwx4eZBc0xztDOboeSmMpGmKVlRmAmpOajBod3lhIayYEULyg6iUftFyKxwfxZNrl8r2wXpy7VJE4sb3L3zCZKW6LtXaTpyP09sQECICpy1Oi6DW78PjaxbhjY9Oo2la+dRiy6lQDOWl6kVfanrPapmhx6ezq6RPlD3glYQAt+gLljQSBEfU0zGDI9rBHD2ppSLLLJKKSg4rFJXZgFoyG+EXX78CL912OX7x9Suwbe1SzHRITbyodOVCWDEjhHgL0XKrrtKn2Afrmf1HUVtpXF+JDtY1TStHh4Ku7WhpRNO0clP7J/mFbQhIoWJHqbwTSAB49cDJtDK6n/acRHWFeg6Mkt4TITNE+3S5IMoe8EJCgJv0BTO8CPw+9cfA7ytR3a6ntCQYlXD/7oNYPLsO6y4/P62E44HdB3Hf1fPxSVTKKRUyM1ts6w2t2PzyIbz2Qf/UZ6xSVFas/BhdjbAqVTQfqwmFsGJGCPEWouWWND6h2gdLGp8wvO/qcnV9XqWxXYtkhkCmkdvR0ohvWugUii6RcEMJRj7wStYBIUbw+vS7qQBFb3aAYlXfsCG9p7eHspK8VZLFWpUxdslwUfZAvhICrLxvbtIXDHgRFBcXoS3QIGuAtwUaUFKsPS9dK5gzGJHw5c/NURxlHpZGcTIYw1B0FL87+gmuvGi6avaTUgrlltWtuPuL8xAaMa+oUoVCbWUZtqxuxT27egyXJRoRMlamiuZjNcFJ5ZyEEKKHpNySC+pYIbfCAvtg+UqL0RFolO1B1hFohE+jbEUPRQC+2DpzavGqvLQY/WfipvebRHSJhFtKMNQQ5ex5IeuAEDN4ZfqdnIxQC1A8vOd9vLqxA/fvPphTkElLZgyPSNj8yqEsefv4mkVIAKqyWCn4aKcMF+XH5CMhwOr75iZ9wYCXixBl4JQWF2F9WzOA9OlLyWDURCKB7r4hU8fUGmX+3/7ys7jth+9NHbe5sQp+X4nssdRSKO/Z1YNta5figunVOZ9jKnJC4ap5Tdh6QytioxM5r/wYETJWNx/O12qC11fMCCHeY3x8AqsWfio9qBOKYcxE9lUSkbJYGp/AbSsuxAQSWfr8thUBjJo8/2BUwjdk9BIwqdPMNtoV3XRf9P7tQKSzxzYERAtmR1qLiPupJCP+0xdaFL8TlcYRGpFyDjLde/U81XOJj07Iyts3PjqNVw+clM02S5XFmfciHzJchB9jd0KAiPvmJn3BgJdLMGvgqAnUqvJS7PztMSydU4/OtuYp4777+DB2/vYY5s2qncrKMmpUTUwkVEs47lpVlPZvANhyfavsyyc6hVJJKLz2QT/iYxPYtnYpLmzSH1BT2t87x4bwq49OY9nceoTjY1m/ixXXmfq7n1eVv/JCr6yYEUK8z6lQDHft6pHVWe2BBjxx0xLMqKkwvP/qilK0BxrQpbB/rV4qaoyPJ3DLc++gs705S5/f8tzbePHvLze8b0C8/hU5wTK5f7eUYMgh2tljGwKihheyI52EiPupJiO+/pefVf1upa805yDTqr5hdAQasE9Gn3UEGvHWx/K+X9O0csVpyGqlkPmW4QlgMs3ZAuxMCBBx39ykLxjwcgFmDRwtgRqJj2HtZXOzyg3bAw1Y19aMjTu7cz5mJlFJvURjKJqe9ri/dxBhaQxHToezVjtyTaHMdfXEaqEgtz+/r2RqStfdL/ZM/T31dzGbKpr5u/t9Jdix7lIkANnUYicb+YQQYhdDEQndfcOKQZehiGQq4BWNj2HTNQvw8J5DaUGv9kAD7r92AaImShoj0hii0rjiePmIhi7WIhQbhd9Xgs72Ztl74+QJloC5IT05HUdQFozwKZxsQ0AU8EJ2pFmsfK+1eht/+8bFhnpVqcmI4iKotrDxlciXvGuVQr50Wxse3HMoK6v4vmvmYfVTb8l+T6tXpVIp5EaVLDVATBmdyECvm6dNuklfMODlAswYOHoUVHBkFBt3dqetCM8+rxI/P3QKG3d2IyqN53RMObSmTo2NJ7L+1vdJFH//v97LEiq5pFAaEVJWCwW5/XW2N8uWeKb+LmZSReV+96g0js5n38ama+bj/mvmIxIfY3khIYRkEI6PqQZdtHpwaTE6kcDjP/sAS+bUY31GFtZjP/0Ad69SLxFRQ6tpvdZ2LWory1TvTU2l+QmW3/z5h4rtD7Zc32pq/2aH9OhBpHNkR88UtiEgcuQ7sybfWP1ea/U2/iQiISKNW+rDnAzGVFvYTC4IVOW0z6g0jqODEdkqoZPDsSwfMsn0avWJvkqlkF+74kLV71ldRueVQK+o8kO36AsGvFyAGQNHj4KqqSjLWhF+6quXKK4Qax1TDrW0x7ZAA97rG8r6e1IYZgoVveUgRoWU1UJBbn9LZ9cp3t/k72ImVVTpd49K47j7xR784utXYMmc+hyughBCCoOGKh/+++sfKQZdHrluoan9T0wksPcPp7H3D6dlt3/j311seN8VpSWq+rGi1FxAp6q8VLEfZxGAJ25aYmr/IidYAtYM6VFDtHNkV88UtiEgmbipQbXViHivtXobP3r9Qst9mNLiItyRkeCQDE5t3NmNVza0y35PS+6UFhfJ+jQbVgbQ0dIo64/4fSWKslitFPKtjwcVB7OYbQkgh1cCvSLLD92gL8yP6yHCMWPg6FFQyZcglXKNSU65GlXJtMfM47SfXVXY0XU07e9tgYa0aVKp9dyR+BjWtTWjLdCQ9Z11bc1TE670jsrNRO5+JDEiFOT2Fx9TN9rPxEYV75meVNFCNkzySTAq4Uh/GN19QzhyOoxgVL18hhDiPEbHE1MljU/fvAxPffUS7Fh3KTasDKC7bxijMhnJuaBV4q+0Iq5r36Pq+jE6ai47LRwbUwxIdfUOIhwzuX+BEyyBc0N65O7P+rZm0wEvo3aHXqy2TwjRi5saVFuNiPdaq7fxiEyGk55jqsmI/jNxLJtbj+17e3HLc+/gth++h1ueewfb9/Zi2dx6RfmhJXeUpvR+eDKEratbZf2Y+Oi4oiy+75p5WX5hkh1dR3HfNfM0fUCrsMKfcoJvYMan9ALM8HIBZqKyehSUXA1u9/FhxVVio0ZVZtqjr7QYYxMJfPf1j9IM/KTheTIYS/t+UqjIlWCmrlA8f+tlAIwLKatrkuX2pzegaDRVtJANk3zBZq6EeIORUfWSxpjJoJFWiX+tibLAcHxcVT8+1/k5w/sGxC+miNZdDVU+bH31A9nym3/+XR++feNiU/sXfX/c1DOFeAs3Nai2GhHvtdbCxxmNxQMjPsyKi6bjioum5yw/tORO8v8ztz103ULMVPBjBsISvvr072R1lVopZFQax8nhmKwMT/UBrcKsTnKSb+CW8kMRMODlApQEzVXzmrD5SwswEJbw8UBEtpmhXgWV+RLUVJbhy8tm455dPZYaValpj0f6w/j327vQ2d6Mr142N0tobVu7NO27SaEiV4IJYKqRbkVZCbr7hlDpK8F/uaoFiQTQ+unarOa6akLKaqGQub96v37DwUiqaCEbJvnAKzX+pLDgeHl5RPeREimf6yrl9WPqdjPUVJSpNq03G5ASrbtq/T48dN1CvPHRuXLSoqIifLquEv/hc3NMP/92LDYVstNC8kchB1tFvNe1lT5VWVqjUZpnxocxIj+09vmtGxdjKCIhFBtDTWUp6v2+qeEuSn5MMtssk603tCrqgY6WRrzTN6So48zIWDmbyIxOcqJv4IbyQxEw4OUS5AJSvpJi3PVij2rUOBcFJfcSiDSqGqt9isKuLdCA7uPDaeebFCpywid16mFyf35fyWQ5yi978d3XD6fte8e6S7OElJygu7Cp2pJrBbLvr0jDodbvw+NrFuGNj06jaVr5lCI9FYphxUXTC1LYicQrNf6kcHDSqqPTEN1HSqTj2DStHFe3fgo3XPIZNNWUIxwbx7SKUpwKxfDie/+KpmnqjYK1aKz2Yce6S7Ft7+Gs7Dc5vZordjjVCQCvHjiZ1gNmeUsjrrhouul927XYVKhOC8kvTgu22rVoI+K91pKl9VXWHDMBABmV2kblh9L3jNgTRjPRtqxuxYOvHJLdpxkZq3QNj69ZZFgn0TdwDkWJRMJcMwqBhEIh1NbWIhgMoqamJt+n4yiCUQkbdnbLvkjLWxqzosZJpZCrghKtTE4Mj2QJkfazddjJCZFJASeNTyA4Moras8G+1Oyzyd4qQ2lOitzfknS0NGJ7yj3Kl/Nn9HfRw4nhEdz54wNZRj0dWuvp7htSHL0MAC/ddrljhgRQrmZTaPckV/1RaNj1Pp8KxRRXxM1wbDCCe3b1pOm+9kADHl3dirkN2RO4ciEYlfBf//f/xcWzarKyEv5wMoQnblxsybMjSjfa8ezL2TVJ52hmgejeQpOpeuA9sRa77XYz77WcLwUAG57vlm2+nvRRItK4oWPaeW/MylQ1Wa+0zWoZq+caAOSsk9zkG+QDK2IMeuUqM7xcSq5RYyPRfDsEptxqUXVFKSLxMTx/62WYVlGGirJiPPDyIbz+Qf/U966a14StN7QiNjqBM7FRVJSVZGWKqU1C3Jdyj/KZcipqlXbqmnrtv6ZChD3TiJvgqqM6drzPovTrqVAsK9gFTDaUv3dXD564aYmpoNpgRMKXL5sj299sfVszBiPWPDuidKMdz77TsmAI8Rr5sNuNvtdKsv7eq+fJBruAcz7KhU3VOR/T7ntjVqaqyXqlbVbLWD3XcGFTdc77p2+gjN0Ba05pdCmiG6NqCUwrJ0zU+idLB5fMqceFTdWYUVOBC6ZP/rux2oe7XuxJC3YBwGsf9OPuF3vQWO3Dkjn1GBnNbm6oZxIiIH6qUj7w4jU5GU7OIm6CU1zVEf0+i9SvQxFJdYriUMSc7B+bSOCZ/Udl+5s9s/8oxiccWzQAwL5nP9OuYbCLEOvIl42b63utJuv/dWhE9btJWZTrMe2+N/myJ6yUsaKugb6BPHbGGJIIzfB69NFH8ZOf/AS///3v4fP5MDw8LPJwBYXoqLFTMgD0nofc/dA7CVFL0A1GJOB02FUNnUOxUdVmmIXu0FpNITdzJe7DK6uOokruRb/PIvVrSGOyl9Z2LSYmEqr9zZwe8PLKsy8aDrQgTsYtizZqsh6A6QEgcu9pOG7vvfGCTBV1DV7yDazUCfmIMQgNeEmShBtvvBGf//zn8fTTT4s8VMEhooFi6sM8pmG02qVM9Cq1xmofOloa016g7uPDaAs0yBrnqfdIS9CdiY3ipn/4tav6X9VWlmU18Qcmy06eXLsUNSYndZFsWMZC3IIXpriKTocX+T6LdNZqKkpNTf7SIiqpB8yURsk7BTlbIUmHS5590XCgBXE6bgmyqMn6gyeCpgaAKL2nD123EH5fiaIstvreuM2esHoSoxZe8A2s1gn5CFgLLWl88MEH8V/+y39Ba6u5Ed4km2TUODNV0mjU+MTwCDbs7MYXvvMrrH7qLYRG1B82u5RJLkrt9hUBtAUapv69o+soNqwIoCOgfo/UUk5Tp0WKTLW0mqryUsWyk2f3H0VVOdv3iYBlLMQNWK0/7MaudHhR77NIZ+28Kh+evnkZuvuGcMtz7+C2H76HzmffRnffEJ6+eRnOqzI5RbFS/fu1LlhMybQVgEldf/uKQJ7OyDnko9SEkFxxS6mYmqxPJIDv7T0sa6d/75fy/YeTqL2n9+8+iE3XzJf9noh74yZ7ItPX/cITv8IdZwekibwGN/sGInRCPgLWjvJ64/E44vH41L9DoVAez8b5WBU1lnuY9WZHiUZv1H0gLKHz2bfR2d6MzrZmxMcmUF5ajN/98RP82fn1uPfqeYiNjsveI6WU02QT3o07u6f+5paGzuHYmGofl3BsDDM4JIgUKNQ17l51dErJvVFEriaXlxbjqV/2yjpRxUVF2H522pRR3Laan4mSrdB9fBidz76NVza0O/rZEY3b3y0nQT0jDreUiqnJy8+dfx6++/ph2e/t03jXtN7Te6+el3VckffGDfaEWuDmzrPN/J1+DflAhE7Ihx3hqIDX1q1b8eCDD+b7NFyFFZOM5B7mHV1H8eRZwzjVcLZbmehVaqHYKKLSuOJUxisvmq46+jVVWA9GJoVd9/FhbDwb+U/FKb0B1HBLfwNC8gF1zSSiJuElEdUHyO3yTaSzNhCWsE9hsUPLidKDWxxNJbRsBac/O6Jx+7vlJKhnxOKGIEut34fH1yzCGx+dRtO08qkS81OhmGafYbV3Tes9HZHGbb83ou0Js4iaxOh1ROiEfNgROQe8Nm/erCnA3377bSxbtiznk7n77rvx9a9/ferfoVAIs2fPznk/TsINjT/lHuaoNI6NO7vR2d6Me784D9LYRN6UiR6lZkV65JSw7g/jpn/4tal96UXU8+GW/gaE5AMv6hqnIbIPkBfkmyhnzY6Axay6SnzrxsUYikgIxcZQU1mKer8PM2oqTO9bNF54dkTC+2Md1DPicXqQBQASAF49cBL7etN14SVXz1P9ntq7puc9ddK9cYIvzGC+MUTpBLvtiJwDXhs2bMCXv/xl1c+cf/75hk6mvLwc5eXlhr7rRNzS+LNaoZ9TchX0usWzMH9Wrc1nlY6W4LYyPdKuVEuRz4fby04IEYnXdI3T0Or5sG3tUlPGrlcaj4twSOwIWLjFtpGDulEd3h/roJ4hU7qwN1sXruobNvyuuek9dYq+YDDfGKKeNbufi5yb1jc2NuLiiy9W/a+iwvmrfKJxU+NPX0lxVgPXJG2BBvhKhM42sAQrmyba0YDR7PMRjEo40h9Gd98QjpwOZ33eTU0kCSH5QUuOGEVP6YBZ2HhcHtHNnN1k28hB3agO7w8h1qGmCx/e8z4eum6hoXfNLe+pk/SFWwYdOA0Rz1o+nguhPbz6+vrwySefoK+vD+Pj4/j9738PAAgEAqiurhZ56LzjpsafwyMS1rc1A0jv15Vs2h4ckQBU5ens9GNliYjo3gBmng+9UXE39DcghOQHkatroksHvNJ4XESZh+jeGG6ybZSgblSH94cQa1DThVFpHKERyfC75ob3dCAs4d1jQ9iwMoCls+umepi91zeEHV1HbdUXtX4fHrl+Ie7Z1YOuFF+3PdCAR65f6Kj75jSsftbyYUcIDXjdf//9eO6556b+vXTpZBP0X/7yl7jyyitFHjrvuKlWuLq8DGv/6beyzsPGnd14ZUN7vk9RN1aWiMjtyyoHxejzkWupkJNq+AkhzkB0yaHo0gEvNB4XGXAU2RvDTbaNGtSN6vD+EGIeLV1YVW6u15bT39NwfBRPrl2KZ/YfTdPXbYEGPLl2KSJx+/RFMCrhoT3vY8mceqzP8HUf3vM+vn3jYkffy3xj5bOWDztCaMDr2WefxbPPPivyEI7FabXCaoGaxmofls2tl3UemOZ5DisdFKW+aUmqFLZ7YXWdOKOBJylcRMuRxmofrprXhM/OrMla1f3wZMi0TnGafs0V0QFHLwwMoIwkhIjCLvnipl5bIqir9OGbP/8wrXoIOFdNtOX6VtvOZSAs4fUP+vH6B/2K26lj7CEfNpzQgFch4yQhp2X8un3MuB1Y7aAk+6ZlKgFAvW+aV1bXCxmnNPAkhYtoOVLr92HTNfNx966etIWU9kADtqxuNa1TnKRfjSAy4GjHwADR954ykhAiCjvlS6H7V9L4hKyfA0wGvaTxCdvOhf6Tc6iuKEV7oCGttDRJe6AB1RXWh6ec343cpTiloaDexnDJ+txffP0KvHTb5fjF16/AtrVLMZPGJQDrmzAn+6bJNV0+1zctG7dnNrgFUc28ndTAkxQuouVIMCrh3pcOZhm6Xb2DuO+lg6afc7v0qyg5INLwFj0wQPS9p4wkhIgiH/LFbf6VlXovHB9T3R7R2G4lRitriPVE4mNYp+ADr2trFvJc8NcViBMaCuaykuz0WvB8YrWDYrRvmtszG9yAyNU/lqQSJyBajtjxnIvWr24tC7RjFVvkvaeMJISIIl/yxS3+ldV6z0mL9EYra4j1BEdGsXFnt6IP/Pytl1l+TAa8BJNvIccUTmuwWmgb7ZtW6OnRohFdDsT3kTgB0XLErudclH51c1mgXQ6GqHtPGUkIEQXlizIi9J6TFumTlTUA0oJe6ZU1VbadTyFTU1GmOniIPbwcjhObrDopuu5mrBbaZhxOJ2QOehXRq398H4lTEClH3N7YXLQcEBlwdJKDYQTKSEKIKChflBGh9/ToOrt8Z6OVNcR68mGnMOBlEU5tsup249cpiHBQlBxOADjSH1YV/vnOHPQqolf/+D4SJyFKjri9sbldZYHfunExhiISQrEx1FSWot7vw4yaClP7dXsWMGUkIUQUlC/KaOm9SHzUUHBKbXHNTt/ZaGUNsZ582ClFiUQiYfleLSIUCqG2thbBYBA1NTX5Ph1FglEJG3Z2y0bGl7c0mi5/MMuJ4RHFh8qpTRP1kI+MuuQxrcqISL2G2soy+EqKcfeuHscFTguFI/1hfOE7v1Lc/ouvX4ELm6pNHSPf76Nb5KqdFOo9ESlDRT7nwaiE//ov/xcXz6zB0tl1iI9NoKKsBO/1DeHDkyF8+8bFpq7DLjkg0tC3WlfZSb5lJDFPocpUNXhPnEE+5IsTK4AyUdN7fl8JfrqxA299PIimaeVTOvdUKIYrL5pu6L7lw3embnEWVtgpeuUqM7wswOlNVr1YApevjDorMyIyr2HDygC6+4ayGipa1TeGaGPH6p8X30fiPkTLUJHP+WBEwpc/NwfP7D+atlqb7MUxGDGnc0XLAdE9wgB3ZwFTRhJCRGG3fHFqBVAmanrvwS8twMlgDHsOnMjqf9XcWAW/ryTn+5cP35m6xVnYaadwJIEFuKEJYq3fhwubqrFkTj0ubKp29cvthbHlctewdHad7PQQwJpx8kSbZJrt8pbGtL9bnWbrpfeRuA+7ZKio53xsIoFn9h/Nkpf7ewfxzP6jGJ8wl7guWg7oMfQLHcpIQogo7JIvbvJX1PTesrn12PbLw7I6d9vewxiO5u7n5st3pm4pTJjhZQFsgmgvTs+o04PcNcTHJlS/44TAaSHAFSDiddwuQycmEoqLA/t7B00HvACxcsANi2SEEELM4TZdq6T3/m14RFXnRqSxnI9F35nYCQNeFsAmiPbiBWdB7hrKS9UTLin87cPN5UCEaOF2GRrVMK6j0rglxxElB2joE0KI93GjrpXTex/1h1W/Y0Tn0ncmdsKAlwW4fSqS2/CCsyB3Dd3Hh7Hy4umYP6tWthEzhX9+cUPTUUL0YJcMFfXO1Faq76O20tk6oLHah6vmNeGzCk33KesJIcQcTrDZ3OivyN23er/6eRrRufSdiZ0w4GURTi+DcoLgtwovrArIXcOPfteHH97653hoz6G0RsztgQZsWd3q2t/LC7il6SgherBDhop8Z+zSAcICdn4fNl0zH3fv6qGsJ4QQi3GKzeY2f0Xpvm1Z3Yq/mNeE1z/oz/pOR0sjmqaVGzqelu/sJd+V5JeiRCJhvtmFIAp5hK+VL7lTBL+VeGG0bOY1bFgZwO/7htAlUycvakQv0SYfo5NFUshyVYlCvCciZagd74xoHXByeARvfHTashHsqXhNphCSSSHKVC14T+zBafLVLf6K1n3bekMr7n6xx9B1GPFpvei7EuvRK1eZ4eVA1CLs0vgEgiP6BYYd48/zgdMz6vSQeQ0VZSVpq/2pOLG5ZaHgtqajhOhBpAy1450Ref7BqIRjn0QtHcGeCmWKNlzZJ4QYwWny1ayusksWat232OiEoeswErjyqu9K8gcDXg5D9SV/8QCWzKmfCoroiXQ7TfBbiRcai6deQ3ffkOpnndjcshBwY9NRQvQgSoba9c6IOv/h6Ci27ZUfwQ4AW643V3ZImaIOV/YJIUZxonw1qqvslIV67tuFTdU5XYfRwJWXfVeSH9THwhHbUXvJu3oHsXR23dS/kwIjGJUU9+dEwU/kcWNzy0KAvwshueH2dyYijVk+gj0Vt98fkWg5SGr2DiGEeEW+2i0LRdw3PYErOei7EqthwMthaL3k8bGJtH+rCQzAO4K/EEg2t5TDic0tCwX+LoTkhtvfmYjGiHUjI9hTcfv9EYlRB4kQQgDvyFe7ZaGI+2Y0cEXflVgNA14OQ+slLy/N/snUIt1uFPzBqIQj/WF09w3hyOlwwazoJkf0Zv5eHNGbX/i7EJIbbn9n6jRGrBsZwZ72fZffH5FwZZ8QYga3yVcln8duWSjivhkNXLnRdyXOhj28HIbaCNu2QAO6jw9n/V0t0p0UYEoTQpwm+Au9d4cXmvF7Ef4uhORGEYBVrTNx8+XnIz42gfLSYvSfief7tHTRNK0cHS2NsqvrZkawp0KZIg9X9gkhZnGLfFXzefIhC62+b2o+rVrgym2+K3E+DHg5DKWXvD3QgHVtzdi4szvt83oi3W4R/JzKMYkXmvF7Ef4uhOgjGJXwDRlZDuRnLHyu1Pp9eNwGY5syJRujDhIhhKTidPmq5fN868bFeZGFVt43M4Ert/iuxB0w4OVA5F7yirJibH75UFrvkFyMb6cLfoBTOQghxAt4QZbT2M4PXNknhBQCWnoyEh/zhCw0o0vd4LsSd8CAl0ORe8m/feNiTxvfXurdEYxKGAhLCMVGUVNZhsYqb/1WhBCihFdkuZuNbTfrIAYbCSFeR0tPhkZGccH0ak/JwgQw2e+AEJthwMtFOMX4ljOkAZg2rr3Su6PQ+5ARQgobr8hy0YgKSp0YHsGdPz6Afb3u1UFOsXcIId7DCQsCevWkW2Sh0j2lT0ScAANeJCcyBZffV4Id6y7F9/b2mjauvdC7g33ICCGFjhdkuWhEOQHBqJQV7AImddCdLxzAduogQkgB45QAjJf0pNI93XpDK+56sYc+Eck7xfk+AeIe5II5ne3N2Lb3sKxxfdcLB6bG6+rBbaOE5dDTu4YQQryMF2S5SLQWRnLRm5n0n4ln6eMk+w4PuGZSJiGEWI1I2ZsrXtGTavf02GCUPhFxBMzwIrqRC+YsnV2H7Xt7ZT9vpDmx23t3eKV3DSGEmMHtslwkIpv6D4+o65igxnZCCPEqThuo4gU9qXZPtfQRfSJiFwx4WYgTasJFIhfMiY9NqH7HiDBzS726HOxdQwghk7hZlotE5MJIla9EdbtfYzshhHgVJy5Ku11Pqt3T8lL1QjIzPpHXfW5iLQx4WYRTasJFIhfMESnMRCJKUHqpJt8pUKkRQuRwq2wQuTBS5StFW6AB+3sHs7a1BRpQ5aPZRwgpTLy2KG1UB1qpO9XuaffxYXS0NMpmgJnxiQrB5ybWQsvHAgqlUblcMKf7+LCice3UAI9IQZmsyb/rhQNp98ltNflOgUqNECKHm2VDdUUp2gMN6JLRm+2BBlRXGDfN6vxluGNlCwCk6eW2QAPuWNmCOr+7HDpCCLEKLy1KG9WBVutOtXv64ckQtq5uxT27eizziQrF5ybWUpRIJBL5PgklQqEQamtrEQwGUVNTk+/TUeRIfxhf+M6vFLf/4utX4MKmahvPSBwnhkfSgjlTUxp/2ZslPB9fswgzHeZ4BKMSNuzsVlxtsEpQJldP3FqT7wTs+q0KDbfIVTvhPXEXbpcNH58O4+OBCJ7ZfzQrKLW+rRkXNFbhgunGbIZgVMKHp86gtz+MGTUViI9NoLy0GKdCMQSaqvHZGdMcfW+IN6BMzYb3xBlk+jGAc30WJYzqQFG6U+ueWukTFZLPTbTRK1eZ4WUBTqwJF4VSg8XtLmm6aFfDSrfX5DsBpzUXJYQ4A7fLhuDIKDbu7EZnezM625qnglLdx4excWc3nr/1MsP7HghLWPfM2+hsb8aMmoqpv58IxvDITz7AKxvaHX1vCCFEJF5vFK+mA0XpTq17aqVPVEg+N7EOBrwswGs14ako1XnLCS43KAsKSvfA34oQIofbZUNNRRmi0rjihGMzNkMoNqq6b6ffG0IIEY3bF6WN6kCRulPEPZXzQb3scxNxMOBlAV6qCU/FzT1SlHCaoHRr02U7cNpvRQhxBnbJBpHDTZQa+XaYtBkoNwkhxNsYlfNu0g9KPujWG1o96XMTsaiP2CO6SDYqX97SmPZ3Nzcq12oKGIxKeTozcySDk3LYLShPDI9gw85ufOE7v8Lqp97CF574Fe7Y2Y0TwyO2nYOTcdJvRQhxDnbIBtHy+fYVAbQFGtL+1hZowO0rAqb2S7lJCCHexqicTy62yGF2scVK1HzQzS8fwpbVrZ7yuYl42LTeQrzUqNzLTQGd0LDS7U2X7cIJv5XXcJtctQPeE/chUjaIls9H+sO4dnsXOtubsXR2XVoPrx1dR/HKhnZT+pVyk+QbytRseE+IlRiR88GohA/+dAbb9h6WneI771POGGqi5YPu/a9XoKHK5xmfmxiHTevzgNtrwlNxe48UNZzQsNLtTZftwgm/FSHEeYiUDaLls+g+W5SbhBDibYzI+YGwhM5n35YdmNL57NuOGWqi5YOGRkZxwfRqR5wrcQcMeBFZ3FTnbYR8Bye9HFC0mnz/VoQQZyJKNoiWz3boV8pNQgjxNrnKebcMNfG6D0rshz28iCzsAyIWCnNCCHEmouUz9SshhBC7cYvvQR1JrKagM7w4IU+ZZCN+pfpw3idzeHWyJyGEuJ3Gah+umteEz86smeqxVVFWgvf6hvDhyZBp+Uz9SgghxG5E+h5W+tTUkcRqCrZpvdK408fWLMIsNnWdwkuN+J0GGwuTfMDGudnwnpBM+gYjuHtXT1pj3/ZAA7asbsWchipLjkH9SrwKZWo2vCfECYjwPUT51NSRRAu9crUgA16ckEeMYnVWIIU5sRsa3dnwnpBUaCNowwx5ogZlaja8J8RO1GS0lb4H9SXJJ5zSqAIn5BEjiFjBYGNhQghxFrQR1GGGPCGEOBctGW2l70F9SdxAQTat54Q8kivBqJSlPIBJYX7XCwcQjEp5OjNCCCFWQhtBGepCQgjJjWBUwpH+MLr7hnDkdFionLRbRlNfEjdQkBlebplSQZwDVzAIIaQwoI2gDHUhIYTox+6MWLtlNPUlcQMFmeHFcackV4Ij6isiwRGuYBBCiBegjaAMdSEhhOgjHxmxdmdcUV8SN1CQAa/kuNPMF5TjTokSfp96MqTfV2LTmRBCCBEJbQRlqAsJIUQferKtrMbujCvqS+IGCrKkEQBm1VVi29qlnJBHdFFcXIS2QEPaiPokbYEGlBQX5eGsCCGEiIA2gjzUhYQQoo989LdKZly9qTA1UUTGFfUlcToFG/ACOCGP6Ke0uAjr25oBIM3Qbws0YH1bM418QgjxGLQRsqEuJIQQfeSjv1Uy4+quFw6kBb1EZ1xRXxInU9ABL0L00lDlw9ZX/7/27jwuqnL/A/hnkGUQGFRwAUVWd8X1ulJWZphdc7tuuS95udc9NbQsaDG1q+aO6S2XzPJ2U69luaSAmpUKKqhcJMTllyBhyqIh4Hx/f/RibuOwjMYwc8583q8XrxdznjNnvs9zzpzvc545SwraN66NCT0Cca9EDxdHB5y+dhs7TlzF0iFtrR0iERGRRTEXEhGZxxpnWwE844roQRzwIjKDZ01nvNG/NeZ9noQ1h380TOc16kREZC+YC4mIzGOts61KP5v7Y6LfcMCLyEz8xYSIiOwdcyERkXm4vySyPg54ET0E/mJCRET2jrmQiMg83F8SWZeDtQMgIiIiIiIiIiKqShzwIiIiIiIiIiIiVeGAFxERERERERERqQoHvIiIiIiIiIiISFUsNuB1+fJlTJw4EYGBgXB1dUVwcDCioqJQVFRkqY8kIiIiIiIiIiKy3FMa//vf/0Kv1+P9999HSEgIzp07hxdffBF37tzB0qVLLfWxZENy7xYhp6AIeYXF0Lk6wdutap9SYunlExERKdGNvELculOEvMIS6FwdUbumM+rrtNYOi4geEvu6ZK+47VNVsdiAV58+fdCnTx/D66CgIKSmpiImJoYDXnbg+u1fEfl5Eo6m5RimPd7EG4sHh8K3lqvNL5+IiEiJrt68g/m7kvHtjzcN08JCvPDOwDZo7OVmxciI6GGwr0v2its+VaVqvYdXbm4u6tSpU275vXv3kJeXZ/RHypN7t8hkJwUAR9JyMO/zJOTe/WOXtVp6+USkbsw1pFY38gpNBrsA4NiPN/HKrmTcyCu0UmRE9uWP5hn2dclecdunqlZtA17p6elYvXo1IiIiyp1n0aJF8PT0NPz5+flVV3hUhXIKikx2UqWOpOUgp+CP7agsvXwiUjfmGlKrW3eKTAa7Sh378SZu3WF+JKoOfzTPsK9L9orbPlW1hx7wio6OhkajqfDv1KlTRu+5fv06+vTpgyFDhmDSpEnlLnv+/PnIzc01/F27du3ha0RWl1dYXGF5fiXl1l4+Eakbcw2pVV5hyR8qJ6Kq8UfzDPu6ZK+47VNVe+h7eE2dOhXDhw+vcJ6AgADD/9evX8eTTz6Jbt26YcOGDRW+z8XFBS4uLg8bEtkYndapwnKPSsqtvXwiUjfmGlIrnbbibl1l5URUNf5onmFfl+wVt32qag/d8/H29oa3t7dZ8/7000948skn0bFjR2zatAkODtV6yzCyEm93ZzzexBtHyjgd9fEm3vB2/2NP2LD08omIiJSotpszwkK8cKyMyxrDQrxQ2435kUgJ2Ncle8Vtn6qaxUagrl+/jieeeAJ+fn5YunQpfv75Z2RlZSErK8tSH0k2wrOmMxYPDsXjTYwHRh9v4o0lg0P/8CNlLb18IiIiJaqv0+KdgW0QFuJlNL30KY31dVorRUZED4N9XbJX3PapqmlERCyx4M2bN2P8+PFllpn7kXl5efD09ERubi50Ol1VhkfVIPduEXIKipBfWAwPrRO83Z2rdCdl6eUTqRH3q6bYJqQ2N/IKcetOEfIKS6DTOqK2mzMHu6jacJ9q6lHbhH1dslfc9qky5u5XLXYzh3HjxmHcuHGWWjwpgGdNy+6YLL18IiIiJaqv03KAi0gF2Ncle8Vtn6oKb6pFRERERERERESqwgEvIiIiIiIiIiJSFQ54ERERERERERGRqnDAi4iIiIiIiIiIVMViN61Xk9KnROQVFkPn6gRvN95EzxxsNyIiIvVRen5XevxERGrH/fSjYbuZ4oBXJa7f/hWRnyfhaFqOYdrjTbyxeHAofGu5WjEy28Z2IyIiUh+l53elx09EpHbcTz8atlvZeEljBXLvFplsNABwJC0H8z5PQu7dIitFZtvYbkREROqj9Pyu9PiJiNSO++lHw3YrHwe8KpBTUGSy0ZQ6kpaDnAL73XAqwnYjIiJSH6Xnd6XHT0SkdtxPPxq2W/k44FWBvMLiCsvzKym3V2w3IiIi9VF6fld6/EREasf99KNhu5WPA14V0GmdKiz3qKTcXrHdiIiI1Efp+V3p8RMRqR3304+G7VY+DnhVwNvdGY838S6z7PEm3vB2t+8nHpSH7fbbddTp2QU4ffUW0n8usOvrpomIqHpZKgcpPb8rPX4iIjUpK1dxP/1o2G7l04iIWDuI8uTl5cHT0xO5ubnQ6XRWieH67V8x7/MkHHngaQdLBofCx46fdlAZe243PiGDbJkt7FdtDduE1MTSOUjp+V3p8SsB96mm2CZExsrLVUsGh0IA7qcfgb3lN3P3qxzwMkPu3SLkFBQhv7AYHloneLs7w7Om/Y6Smsse2y33bhGmfnK6zJsGPt7EG6tHtFd9G5Bts5X9qi1hm5BaVFcOUnp+V3r8to77VFNsE6L/MSdXAeB++hHYU34zd7/qWI0xKZZnTfVuKJZkj+1mzhMy7K1NiIioelRXDlJ6fld6/ERESmZOrgqu58799CNgfjPFe3gRVSE+IYOIiKyFOYiIiGwdcxVVJw54EVUhPiGDiIishTmIiIhsHXMVVScOeBFVIT4hg4iIrIU5iIiIbB1zFVUnDngRVSHPms5YPDjUZCde+oQMXlNNRESWwhxERES2jrmKqhNvWk9UxXxruWL1iPZ284QMIiKyHcxBRERk65irqLpwwIvIAviEDCIishbmICIisnXMVVQdeEkjERERERERERGpCge8iIiIiIiIiIhIVTjgRUREREREREREqsIBLyIiIiIiIiIiUhUOeBERERERERERkapwwIuIiIiIiIiIiFSFA15ERERERERERKQqHPAiIiIiIiIiIiJV4YAXERERERERERGpCge8iIiIiIiIiIhIVTjgRUREREREREREquJo7QAqIiIAgLy8PCtHQkSkDqX709L9KzHXEBFVJeYZU8wzRERVy9xcY9MDXvn5+QAAPz8/K0dCRKQu+fn58PT0tHYYNoG5hoio6jHP/A/zDBGRZVSWazRiwz+/6PV6XL9+HR4eHtBoNA/9/ry8PPj5+eHatWvQ6XQWiNCylB4/oPw6KD1+gHWwBbYUv4ggPz8fvr6+cHDgVe3AH8s1trRuHwXjty4lx6/k2AHGb0nMM6YqyzO2vD6tjW1TPrZN2dgu5VNT25iba2z6DC8HBwc0atToDy9Hp9MpeoUqPX5A+XVQevwA62ALbCV+/uJurCpyja2s20fF+K1LyfErOXaA8VsK84wxc/OMra5PW8C2KR/bpmxsl/KppW3MyTX82YWIiIiIiIiIiFSFA15ERERERERERKQqqh7wcnFxQVRUFFxcXKwdyiNRevyA8uug9PgB1sEWKD1+Kp/S1y3jty4lx6/k2AHGT7aF67N8bJvysW3KxnYpnz22jU3ftJ6IiIiIiIiIiOhhqfoMLyIiIiIiIiIisj8c8CIiIiIiIiIiIlXhgBcREREREREREakKB7yIiIiIiIiIiEhVVDvgtW7dOgQGBkKr1aJjx444evSotUMq15EjR9CvXz/4+vpCo9Fg9+7dRuUigujoaPj6+sLV1RVPPPEEzp8/b51gy7Bo0SL86U9/goeHB+rVq4cBAwYgNTXVaB5br0NMTAxCQ0Oh0+mg0+nQrVs3fP3114ZyW4//QYsWLYJGo8HMmTMN02y9DtHR0dBoNEZ/DRo0MJTbevwA8NNPP2HUqFHw8vJCzZo10a5dOyQkJBjKlVAHMl9l69tWlZSUYMGCBQgMDISrqyuCgoLw5ptvQq/XWzu0Mik9R1YUf3FxMSIjI9GmTRu4ubnB19cXY8aMwfXr160X8AMqa//f++tf/wqNRoMVK1ZUW3yVMSf+lJQUPP/88/D09ISHhwe6du2Kq1evVn+wZags/oKCAkydOhWNGjWCq6srWrRogZiYGOsESxVSW1/TkpTYj7UUNfSPLYX97rIFBASYbDMajQZTpkwBYH/tosoBrx07dmDmzJl49dVXcfr0aTz22GN49tlnbabz8qA7d+6gbdu2WLNmTZnl7777LpYvX441a9bg5MmTaNCgAXr37o38/PxqjrRs8fHxmDJlCr7//nscPHgQJSUleOaZZ3Dnzh3DPLZeh0aNGmHx4sU4deoUTp06haeeegr9+/c3fPltPf7fO3nyJDZs2IDQ0FCj6UqoQ6tWrZCZmWn4S05ONpTZevy3bt1Cjx494OTkhK+//hoXLlzAsmXLUKtWLcM8tl4HMp8569tWLVmyBOvXr8eaNWuQkpKCd999F//4xz+wevVqa4dWJqXnyIriv3v3LhITE/Haa68hMTERO3fuxMWLF/H8889bIdKyVdb+pXbv3o0ffvgBvr6+1RSZeSqLPz09HWFhYWjevDni4uJw9uxZvPbaa9BqtdUcadkqi3/WrFnYt28ftm3bhpSUFMyaNQvTpk3Df/7zn2qOlCqjpr6mJSm5H2spSu4fWwr73eU7efKk0fZy8OBBAMCQIUMA2GG7iAp17txZIiIijKY1b95c5s2bZ6WIzAdAdu3aZXit1+ulQYMGsnjxYsO0wsJC8fT0lPXr11shwsplZ2cLAImPjxcRZdZBRKR27dryz3/+U1Hx5+fnS5MmTeTgwYPSs2dPmTFjhogoYx1ERUVJ27ZtyyxTQvyRkZESFhZWbrkS6kDmq2x927LnnntOJkyYYDRt0KBBMmrUKCtFZD6l58gH4y/LiRMnBIBcuXKleoJ6COXF/3//93/SsGFDOXfunPj7+8t7771X7bGZo6z4hw0bpohtX6Ts+Fu1aiVvvvmm0bQOHTrIggULqjEyelRK7GtakpL7sZai9P6xpbDfbb4ZM2ZIcHCw6PV6u2wX1Z3hVVRUhISEBDzzzDNG05955hkcP37cSlE9uoyMDGRlZRnVx8XFBT179rTZ+uTm5gIA6tSpA0B5dbh//z4+/fRT3LlzB926dVNU/FOmTMFzzz2Hp59+2mi6UuqQlpYGX19fBAYGYvjw4bh06RIAZcS/Z88edOrUCUOGDEG9evXQvn17bNy40VCuhDqQ+Spb37YsLCwMhw4dwsWLFwEAZ8+exbFjx9C3b18rR/bw1Pi9ys3NhUajUcTZggCg1+sxevRozJ07F61atbJ2OA9Fr9dj7969aNq0KcLDw1GvXj106dKlwss2bU1YWBj27NmDn376CSKC2NhYXLx4EeHh4dYOjSqg5L6mJSm9H2spSu4fWwr73eYpKirCtm3bMGHCBGg0GrtsF9UNeOXk5OD+/fuoX7++0fT69esjKyvLSlE9utKYlVIfEcFLL72EsLAwtG7dGoBy6pCcnAx3d3e4uLggIiICu3btQsuWLRUT/6efforExEQsWrTIpEwJdejSpQu2bt2K/fv3Y+PGjcjKykL37t1x8+ZNRcR/6dIlxMTEoEmTJti/fz8iIiIwffp0bN26FYAy1gGZr7L1bcsiIyMxYsQING/eHE5OTmjfvj1mzpyJESNGWDu0h6a271VhYSHmzZuHF154ATqdztrhmGXJkiVwdHTE9OnTrR3KQ8vOzkZBQQEWL16MPn364MCBAxg4cCAGDRqE+Ph4a4dnllWrVqFly5Zo1KgRnJ2d0adPH6xbtw5hYWHWDo3KoPS+piUpvR9rKUrvH1sK+93m2b17N27fvo1x48YBsM92cbR2AJai0WiMXouIyTQlUUp9pk6diqSkJBw7dsykzNbr0KxZM5w5cwa3b9/G559/jrFjxxp1eG05/mvXrmHGjBk4cOBAhfcdseU6PPvss4b/27Rpg27duiE4OBhbtmxB165dAdh2/Hq9Hp06dcI777wDAGjfvj3Onz+PmJgYjBkzxjCfLdeBzGfu+rZFO3bswLZt27B9+3a0atUKZ86cwcyZM+Hr64uxY8daO7xHoobvVXFxMYYPHw69Xo9169ZZOxyzJCQkYOXKlUhMTFRcewMwPKihf//+mDVrFgCgXbt2OH78ONavX4+ePXtaMzyzrFq1Ct9//z327NkDf39/HDlyBH//+9/h4+NjcpYMWZ+S+5qWpIZ+rKUovX9sKex3m+eDDz7As88+a3J/TXtqF9Wd4eXt7Y0aNWqYjFBmZ2ebjGQqQelTOJRQn2nTpmHPnj2IjY1Fo0aNDNOVUgdnZ2eEhISgU6dOWLRoEdq2bYuVK1cqIv6EhARkZ2ejY8eOcHR0hKOjI+Lj47Fq1So4Ojoa4rTlOjzIzc0Nbdq0QVpamiLWgY+PD1q2bGk0rUWLFoaHZSihDmS+yta3LZs7dy7mzZuH4cOHo02bNhg9ejRmzZpV5q/qtk4t36vi4mIMHToUGRkZOHjwoGLO7jp69Ciys7PRuHFjQ+65cuUKZs+ejYCAAGuHVylvb284Ojoq9rv866+/4pVXXsHy5cvRr18/hIaGYurUqRg2bBiWLl1q7fCoDErua1qSGvuxlqK0/rGlsN9duStXruCbb77BpEmTDNPssV1UN+Dl7OyMjh07Gp5GUOrgwYPo3r27laJ6dIGBgWjQoIFRfYqKihAfH28z9RERTJ06FTt37sThw4cRGBhoVK6EOpRFRHDv3j1FxN+rVy8kJyfjzJkzhr9OnTph5MiROHPmDIKCgmy+Dg+6d+8eUlJS4OPjo4h10KNHD6SmphpNu3jxIvz9/QEo93tAZatsfduyu3fvwsHBOP3XqFHDcLaLkqjhe1U62JWWloZvvvkGXl5e1g7JbKNHj0ZSUpJR7vH19cXcuXOxf/9+a4dXKWdnZ/zpT39S7He5uLgYxcXFqvk+2yMl9TUtSY39WEtRWv/YUtjvrtymTZtQr149PPfcc4Zpdtku1X2X/Orw6aefipOTk3zwwQdy4cIFmTlzpri5ucnly5etHVqZ8vPz5fTp03L69GkBIMuXL5fTp08bntC0ePFi8fT0lJ07d0pycrKMGDFCfHx8JC8vz8qR/+Zvf/ubeHp6SlxcnGRmZhr+7t69a5jH1uswf/58OXLkiGRkZEhSUpK88sor4uDgIAcOHBAR24+/LL9/uo2I7ddh9uzZEhcXJ5cuXZLvv/9e/vznP4uHh4fhe2vr8Z84cUIcHR1l4cKFkpaWJh9//LHUrFlTtm3bZpjH1utA5jNnfduqsWPHSsOGDeXLL7+UjIwM2blzp3h7e8vLL79s7dDKpPQcWVH8xcXF8vzzz0ujRo3kzJkzRjn03r171g5dRCpv/wfZ2lMaK4t/586d4uTkJBs2bJC0tDRZvXq11KhRQ44ePWrlyH9TWfw9e/aUVq1aSWxsrFy6dEk2bdokWq1W1q1bZ+XI6UFq7GtaktL6sZai9P6xpbDfXbH79+9L48aNJTIy0qTM3tpFlQNeIiJr164Vf39/cXZ2lg4dOkh8fLy1QypXbGysADD5Gzt2rIj89ljVqKgoadCggbi4uMjjjz8uycnJ1g36d8qKHYBs2rTJMI+t12HChAmG7aVu3brSq1cvQwdExPbjL8uDHQVbr8OwYcPEx8dHnJycxNfXVwYNGiTnz583lNt6/CIiX3zxhbRu3VpcXFykefPmsmHDBqNyJdSBzFfZ+rZVeXl5MmPGDGncuLFotVoJCgqSV1991WYGWB6k9BxZUfwZGRnl5tDY2Fhrhy4ilbf/g2xtwMuc+D/44AMJCQkRrVYrbdu2ld27d1sv4AdUFn9mZqaMGzdOfH19RavVSrNmzWTZsmWi1+utGziZUGNf05KU1o+1FDX0jy2F/e7y7d+/XwBIamqqSZm9tYtGRKTKTxsjIiIiIiIiIiKyEtXdw4uIiIiIiIiIiOwbB7yIiIiIiIiIiEhVOOBFRERERERERESqwgEvIiIiIiIiIiJSFQ54ERERERERERGRqnDAi4iIiIiIiIiIVIUDXkREREREREREpCoc8CIiIiIiIiIiIlXhgBeRSkRHR6Ndu3YVznP58mVoNBqcOXOmWmIiIrJncXFx0Gg0uH37trVDQUBAAFasWGHtMIiIiIiqDQe8yCJEBE8//TTCw8NNytatWwdPT09cvXq12uP6/PPP0aVLF3h6esLDwwOtWrXC7Nmzqz0OS5gzZw4OHTpkeD1u3DgMGDDAaB4/Pz9kZmaidevW1RwdERFVh82bN6NWrVom00+ePInJkydXf0BEREREVsIBL7IIjUaDTZs24YcffsD7779vmJ6RkYHIyEisXLkSjRs3rtLPLC4urrD8m2++wfDhw/GXv/wFJ06cQEJCAhYuXIiioiKLfm51cXd3h5eXV4Xz1KhRAw0aNICjo2M1RUVERLagbt26qFmzprXDICIiIqo2HPAii/Hz88PKlSsxZ84cZGRkQEQwceJE9OrVC507d0bfvn3h7u6O+vXrY/To0cjJyTG8d9++fQgLC0OtWrXg5eWFP//5z0hPTzeUl16a969//QtPPPEEtFottm3bhitXrqBfv36oXbs23Nzc0KpVK3z11VcAgC+//BJhYWGYO3cumjVrhqZNm2LAgAFYvXq1UdxffPEFOnbsCK1Wi6CgILzxxhsoKSkxlGs0Gqxfvx79+/eHm5sb3n77bQBATEwMgoOD4ezsjGbNmuGjjz4yWq5Go0FMTAyeffZZuLq6IjAwEJ999pnRPMnJyXjqqafg6uoKLy8vTJ48GQUFBYbyuLg4dO7cGW5ubqhVqxZ69OiBK1euADC+pDE6OhpbtmzBf/7zH2g0Gmg0GsTFxRld0qjX69GoUSOsX7/eKIbExERoNBpcunQJAJCbm4vJkyejXr160Ol0eOqpp3D27FnzNwQiIpUQEbz77rsICgqCq6sr2rZti3//+9+G8q+++gpNmzaFq6srnnzySVy+fNno/WVder5ixQoEBAQYTfvwww/RqlUruLi4wMfHB1OnTjWULV++HG3atIGbmxv8/Pzw97//3ZAn4uLiMH78eOTm5hr2/dHR0QBML2m8evUq+vfvD3d3d+h0OgwdOhQ3btwwifWjjz5CQEAAPD09MXz4cOTn5z96AxIRkVVUdmx1/PhxtGvXDlqtFp06dcLu3btNboNy4cKFCo/fiGwRB7zIosaOHYtevXph/PjxWLNmDc6dO4eVK1eiZ8+eaNeuHU6dOoV9+/bhxo0bGDp0qOF9d+7cwUsvvYSTJ0/i0KFDcHBwwMCBA6HX642WHxkZienTpyMlJQXh4eGYMmUK7t27hyNHjiA5ORlLliyBu7s7AKBBgwY4f/48zp07V268+/fvx6hRozB9+nRcuHAB77//PjZv3oyFCxcazRcVFYX+/fsjOTkZEyZMwK5duzBjxgzMnj0b586dw1//+leMHz8esbGxRu977bXXMHjwYJw9exajRo3CiBEjkJKSAgC4e/cu+vTpg9q1a+PkyZP47LPP8M033xgOdEpKSjBgwAD07NkTSUlJ+O677zB58mRoNBqTesyZMwdDhw5Fnz59kJmZiczMTHTv3t1oHgcHBwwfPhwff/yx0fTt27ejW7duCAoKgojgueeeQ1ZWFr766iskJCSgQ4cO6NWrF3755Zdy25GISI0WLFiATZs2ISYmBufPn8esWbMwatQoxMfH49q1axg0aBD69u2LM2fOYNKkSZg3b95Df0ZMTAymTJmCyZMnIzk5GXv27EFISIih3MHBAatWrcK5c+ewZcsWHD58GC+//DIAoHv37lixYgV0Op1h3z9nzhyTzxARDBgwAL/88gvi4+Nx8OBBpKenY9iwYUbzpaenY/fu3fjyyy/x5ZdfIj4+HosXL37oOhERkXVVdGyVn5+Pfv36oU2bNkhMTMRbb72FyMhIo/dnZmZWevxGZJOEyMJu3LghdevWFQcHB9m5c6e89tpr8swzzxjNc+3aNQEgqampZS4jOztbAEhycrKIiGRkZAgAWbFihdF8bdq0kejo6DKXUVBQIH379hUA4u/vL8OGDZMPPvhACgsLDfM89thj8s477xi976OPPhIfHx/DawAyc+ZMo3m6d+8uL774otG0IUOGSN++fY3eFxERYTRPly5d5G9/+5uIiGzYsEFq164tBQUFhvK9e/eKg4ODZGVlyc2bNwWAxMXFlVm/qKgoadu2reH12LFjpX///kbzlLbb6dOnRUQkMTFRNBqNXL58WURE7t+/Lw0bNpS1a9eKiMihQ4dEp9MZtZGISHBwsLz//vtlxkFEpEYFBQWi1Wrl+PHjRtMnTpwoI0aMkPnz50uLFi1Er9cbyiIjIwWA3Lp1S0RM99MiIu+99574+/sbXvv6+sqrr75qdlz/+te/xMvLy/B606ZN4unpaTKfv7+/vPfeeyIicuDAAalRo4ZcvXrVUH7+/HkBICdOnDDEWrNmTcnLyzPMM3fuXOnSpYvZsRERkW36/bFVTEyMeHl5ya+//moo37hxo9Exw6McvxHZAp7hRRZXr149TJ48GS1atMDAgQORkJCA2NhYuLu7G/6aN28OAIZTa9PT0/HCCy8gKCgIOp0OgYGBAGByo/tOnToZvZ4+fTrefvtt9OjRA1FRUUhKSjKUubm5Ye/evfjxxx+xYMECuLu7Y/bs2ejcuTPu3r0LAEhISMCbb75pFNuLL76IzMxMwzxlfW5KSgp69OhhNK1Hjx6Gs7dKdevWzeR16TwpKSlo27Yt3NzcjJah1+uRmpqKOnXqYNy4cQgPD0e/fv2wcuVKZGZmVtT0lWrfvj2aN2+OTz75BAAQHx+P7Oxsw681CQkJKCgogJeXl1GbZGRkGJ0GTUSkdhcuXEBhYSF69+5ttD/cunUr0tPTkZKSgq5duxqddfvgPr8y2dnZuH79Onr16lXuPLGxsejduzcaNmwIDw8PjBkzBjdv3sSdO3fM/pyUlBT4+fnBz8/PMK1ly5aoVauWUd4KCAiAh4eH4bWPjw+ys7Mfqk5ERGR9FR1bpaamIjQ0FFqt1jB/586djd5vzvEbkS3inaupWjg6OhpulK7X69GvXz8sWbLEZD4fHx8AQL9+/eDn54eNGzfC19cXer0erVu3NrnB/O8HhwBg0qRJCA8Px969e3HgwAEsWrQIy5Ytw7Rp0wzzBAcHIzg4GJMmTcKrr76Kpk2bYseOHRg/fjz0ej3eeOMNDBo0yCS23yeBBz8XgMmlhSJS5uWG5b2vovlLp2/atAnTp0/Hvn37sGPHDixYsAAHDx5E165dK/2c8owcORLbt2/HvHnzsH37doSHh8Pb2xvAb+vKx8cHcXFxJu8r6ylgRERqVXpJ/d69e9GwYUOjMhcXF6M8Ux4HBweIiNG03z/4xNXVtcL3X7lyBX379kVERATeeust1KlTB8eOHcPEiRMf6gEq5eWbB6c7OTkZlWs0GpNbCxARke2r6NiqrJzwYK4y5/iNyBbxDC+qdh06dMD58+cREBCAkJAQoz83NzfcvHkTKSkpWLBgAXr16oUWLVrg1q1bZi/fz88PERER2LlzJ2bPno2NGzeWO29AQABq1qxp+GW8Q4cOSE1NNYkrJCQEDg7lf11atGiBY8eOGU07fvw4WrRoYTTt+++/N3ld+utIy5YtcebMGaNf6b/99ls4ODigadOmhmnt27fH/Pnzcfz4cbRu3Rrbt28vMyZnZ2fcv3+/3JhLvfDCC0hOTkZCQgL+/e9/Y+TIkYayDh06ICsrC46OjibtUTooRkRkD1q2bAkXFxdcvXrVZH/o5+eHli1blrmP/726desiKyvL6EDi9zcE9vDwQEBAAA4dOlRmDKdOnUJJSQmWLVuGrl27omnTprh+/brRPObs+1u2bImrV6/i2rVrhmkXLlxAbm6uSd4iIiJlq+zYqnnz5khKSsK9e/cM006dOmW0jMqO34hsFQe8qNpNmTIFv/zyC0aMGIETJ07g0qVLOHDgACZMmID79++jdu3a8PLywoYNG/Djjz/i8OHDeOmll8xa9syZM7F//35kZGQgMTERhw8fNnTeo6Oj8fLLLyMuLg4ZGRk4ffo0JkyYgOLiYvTu3RsA8Prrr2Pr1q2Ijo7G+fPnkZKSYjiTqiJz587F5s2bsX79eqSlpWH58uXYuXOnyc2CP/vsM3z44Ye4ePEioqKicOLECcNN6UeOHAmtVouxY8fi3LlziI2NxbRp0zB69GjUr18fGRkZmD9/Pr777jtcuXIFBw4cwMWLF8s9OAkICEBSUhJSU1ORk5NT7q//gYGB6N69OyZOnIiSkhL079/fUPb000+jW7duGDBgAPbv34/Lly/j+PHjWLBggUkiJCJSMw8PD8yZMwezZs3Cli1bkJ6ejtOnT2Pt2rXYsmULIiIikJ6ejpdeegmpqanYvn07Nm/ebLSMJ554Aj///DPeffddpKenY+3atfj666+N5omOjsayZcuwatUqpKWlITEx0fA04eDgYJSUlGD16tW4dOkSPvroI5Mn7QYEBKCgoACHDh1CTk6O0eX4pZ5++mmEhoZi5MiRSExMxIkTJzBmzBj07NnT5JJ9IiJStsqOrV544QXo9XpMnjwZKSkp2L9/P5YuXQrgf1eZVHb8RmSzrHf7MLInD96o9+LFizJw4ECpVauWuLq6SvPmzWXmzJmGm/0ePHhQWrRoIS4uLhIaGipxcXECQHbt2iUipjdfLzV16lQJDg4WFxcXqVu3rowePVpycnJEROTw4cMyePBg8fPzE2dnZ6lfv7706dNHjh49arSMffv2Sffu3cXV1VV0Op107txZNmzYYCj/fRy/t27dOgkKChInJydp2rSpbN261agcgKxdu1Z69+4tLi4u4u/vL5988onRPElJSfLkk0+KVquVOnXqyIsvvij5+fkiIpKVlSUDBgwQHx8fcXZ2Fn9/f3n99dfl/v37ZbZxdna29O7dW9zd3QWAxMbGlttua9euFQAyZswYk3rl5eXJtGnTxNfXV5ycnMTPz09GjhxpdLNjIiJ7oNfrZeXKldKsWTNxcnKSunXrSnh4uMTHx4uIyBdffCEhISHi4uIijz32mHz44YdGN60XEYmJiRE/Pz9xc3OTMWPGyMKFC41uWi8isn79esNn+Pj4yLRp0wxly5cvFx8fH3F1dZXw8HDZunWryWdERESIl5eXAJCoqCgRMb5pvYjIlStX5Pnnnxc3Nzfx8PCQIUOGSFZWlqHcnBvsExGRMlR2bPXtt99KaGioODs7S8eOHWX79u0CQP773/8allHZ8RuRLdKIPHCBLhFZhEajwa5duzBgwABrh0JERERERFSmjz/+GOPHj0dubm6l95cksmW8aT0RERERERGRndq6dSuCgoLQsGFDnD17FpGRkRg6dCgHu0jxOOBFREREREREZKeysrLw+uuvIysrCz4+PhgyZAgWLlxo7bCI/jBe0khERERERERERKrCpzQSEREREREREZGqcMCLiIiIiIiIiIhUhQNeRERERERERESkKhzwIiIiIiIiIiIiVeGAFxERERERERERqQoHvIiIiIiIiIiISFU44EVERERERERERKrCAS8iIiIiIiIiIlKV/wexLF20jW73FwAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, (ys_ax, edu_ax, age_ax) = plt.subplots(1,3, sharey=True, figsize = (15, 5))\n",
"\n",
"sns.scatterplot(x=data['YearsSeropositive'], y=res.residuals_, ax=ys_ax)\n",
"sns.scatterplot(x=data['education'], y=res.residuals_, ax=edu_ax)\n",
"sns.scatterplot(x=data['age'], y=res.residuals_, ax=age_ax)"
]
},
{
"cell_type": "markdown",
"id": "e162e5c1-107e-4d83-a074-8d9812b67688",
"metadata": {},
"source": [
"Three more stary night skies. Perfect."
]
},
{
"cell_type": "markdown",
"id": "6dc72fe5-e59a-434b-acba-3ceacd58ecfe",
"metadata": {},
"source": [
"Remember, the residual is the difference between the prediction of the model and reality.\n",
"Therefore, we can also use the residual plots to see how well the regression is handling other variables we have not included in the model.\n",
"If the model has properly accounted for something, the residual plot should stay centered around 0.\n",
"\n",
"This can be done for categorical or continious variables."
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "15d2e733-b303-4aff-8451-147f222f5cd7",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABN0AAAHACAYAAACWIh5pAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA8yUlEQVR4nO3df7zX8/0//tvpdzp1pFRMlIUy5Uek8iO2lFFr+f0rTBj5bRhvy5j31saizYYtFNP8GMbM1o8Z3kgoNUNre/vMam8lP1Ic9PP1/cO3M0dF8qzTqev1cnldnMfz+Xg+X/fnOc/Xeeh2Hs/ns6xUKpUCAAAAABSmTk0XAAAAAAAbGqEbAAAAABRM6AYAAAAABRO6AQAAAEDBhG4AAAAAUDChGwAAAAAUTOgGAAAAAAUTugEAAABAwerVdAHru2XLluXVV19N06ZNU1ZWVtPlANR6pVIp77zzTrbccsvUqeNvP8YZgGIZZ1ZkrAEo1uqONUK3T/Hqq6+mbdu2NV0GwAZn1qxZ2WqrrWq6jBpnnAFYO4wz/2GsAVg7Pm2sEbp9iqZNmyb58BvZrFmzGq4GoPZbsGBB2rZtW/X7dWNnnAEolnFmRcYagGKt7lgjdPsUy6dfN2vWzAAFUCCXt3zIOAOwdhhn/sNYA7B2fNpY4yYHAAAAAFAwoRsAAAAAFEzoBgAAAAAFE7oBAAAAQMGEbgAAAABQMKEbAAAAABRM6AYAAAAABRO6AQAAAEDBhG4AAAAAUDChGwAAAAAUTOgGAAAAAAUTugEAAABAwerVdAHUrFKplMrKyqp2kyZNUlZWVoMVAQAAANR+QreNXGVlZQYMGFDVfuCBB1JeXl6DFQEAAADUfi4vBQAAAICCCd0AAAAAoGAuLwUAAADYwLiHe80TugEAAABsYNzDvea5vBQAAAAACiZ0AwAAAICCCd0AAAAAoGBCNwAAAAAomNANAAAAAAomdAMAAACAggndAAAAAKBgQjcAAAAAKJjQDQAAAAAKJnQDAAAAgIIJ3QAAAACgYEI3AAAAACiY0A0AAAAACiZ0AwAAAICCCd0AAAAAoGBCNwAAAAAomNANAAAAAAomdAMAAACAggndAAAAAKBgQjcAAAAAKJjQDQAAAAAKJnQDAAAAgIIJ3QAAAACgYEI3AAAAACiY0A0AAAAACiZ0AwAAAICCCd0AAAAAoGBCNwAAAAAomNANAAAAAApWr6YL2NB0vfC2mi7hMylbsigVH2nvN/TOlOo1qLF6PqspVx9f0yUAAAAArMBMNwAAAAAomNANAAAAAAomdAMAAACAgtW60O36669P+/bt06hRo3Tt2jWPP/74Kvved999OeCAA7L55punWbNm6dGjR8aNG7cOqwUAAABgY1SrQre77ror5557bi699NJMnTo1++yzT7761a9m5syZK+3/P//zPznggAPyhz/8IVOmTMn++++f/v37Z+rUqeu4cgAAAAA2JrUqdLvmmmsyePDgnHzyyenUqVNGjBiRtm3b5oYbblhp/xEjRuSiiy7KHnvske222y4/+MEPst122+XBBx9cx5UDAAAAsDGpV9MFrK5FixZlypQpufjii6st79OnTyZOnLha+1i2bFneeeedbLbZZqvss3DhwixcuLCqvWDBgjUrGABWwjgDwNpmrAFYP9SamW5vvPFGli5dmtatW1db3rp168yZM2e19jF8+PBUVlbmiCOOWGWfYcOGpaKiourVtm3bz1U3AHyUcQaAtc1YA7B+qDWh23JlZWXV2qVSaYVlK3PHHXfk8ssvz1133ZVWrVqtst8ll1yS+fPnV71mzZr1uWsGgOWMMwCsbcYagPVDrbm8tGXLlqlbt+4Ks9rmzp27wuy3j7vrrrsyePDg/OY3v0nv3r0/sW/Dhg3TsGHDz10vAKyMcQaAtc1YA7B+qDUz3Ro0aJCuXbtmwoQJ1ZZPmDAhPXv2XOV2d9xxR0488cT8+te/zsEHH7y2ywQAAACA2jPTLUnOP//8DBo0KLvvvnt69OiRX/7yl5k5c2ZOO+20JB9Oo/6///u/3HbbbUk+DNyOP/74/OQnP0n37t2rZsk1btw4FRUVNXYcAAAAAGzYalXoduSRR+bNN9/M9773vcyePTs77bRT/vCHP2SbbbZJksyePTszZ86s6v+LX/wiS5YsyRlnnJEzzjijavkJJ5yQ0aNHr+vyAQAAANhI1KrQLUmGDBmSIUOGrHTdx4O0Rx99dO0XBAAAAAAfU2vu6QYAAAAAtYXQDQAAAAAKJnQDAAAAgILVunu6AQAAAKxK1wtvq+kS1gtlSxal4iPt/YbemVK9BjVWz/piytXHr7P3MtMNAAAAAAomdAMAAACAggndAAAAAKBgQjcAAAAAKJjQDQAAAAAKJnQDAAAAgILVq+kCAABgY1QqlVJZWVnVbtKkScrKymqwIgCgSEI3AACoAZWVlRkwYEBV+4EHHkh5eXkNVgQAFMnlpQAAAABQMKEbAAAAABRM6AYAAAAABRO6AQAAAEDBhG4AAAAAUDChGwAAAAAUrF5NFwAAUKRSqZTKysqqdpMmTVJWVlaDFQEAsDESugEAG5TKysoMGDCgqv3AAw+kvLy8BisCAGBjJHTbyJXq1s/8LkdXawMAAADw+QjdNnZlZSnVa1DTVQAAAABsUDxIAQAAAAAKJnQDAAAAgIIJ3QAAAACgYEI3AAAAACiY0A0AAAAACiZ0AwAAAICCCd0AAAAAoGBCNwAAAAAomNANAAAAAAomdAMAAACAggndAAAAAKBgQjcAAAAAKJjQDQAAAAAKJnQDAAAAgIIJ3QAAAACgYEI3AAAAACiY0A0AAAAACiZ0AwAAAICCCd0AAAAAoGBCNwAAAAAomNANAAAAAAomdAMAAACAgtWr6QIAAAAAKFapbv3M73J0tTbrltANAAAAYENTVpZSvQY1XcVGzeWlAAAAAFAwoRsAAAAAFEzoBgAAAAAFE7oBAAAAQMGEbgAAAABQMKEbAAAAABRM6AYAAAAABRO6AQAAAEDBal3odv3116d9+/Zp1KhRunbtmscff/wT+z/22GPp2rVrGjVqlG233TY33njjOqoU4LMplUp59913q16lUqmmSwIAAGAN1arQ7a677sq5556bSy+9NFOnTs0+++yTr371q5k5c+ZK+//zn//MQQcdlH322SdTp07Nf/3Xf+Xss8/Ovffeu44rB/h0lZWVGTBgQNWrsrKypksCAABgDdWq0O2aa67J4MGDc/LJJ6dTp04ZMWJE2rZtmxtuuGGl/W+88cZsvfXWGTFiRDp16pSTTz45J510Un784x+v48oBAAAA2JjUmtBt0aJFmTJlSvr06VNteZ8+fTJx4sSVbvPUU0+t0L9v376ZPHlyFi9evNZqBQAAAGDjVq+mC1hdb7zxRpYuXZrWrVtXW966devMmTNnpdvMmTNnpf2XLFmSN954I1tsscUK2yxcuDALFy6sai9YsKCA6gHgQ2trnOl64W2F7GdDULZkUSo+0t5v6J0p1WtQY/WsL6ZcfXxNlwCsI/5NA7B+qDWh23JlZWXV2qVSaYVln9Z/ZcuXGzZsWK644oo1rs//0G4Y/ON13Vpbn5va9nOs7UGB33+r5/OOM6vi+/8f7777bgYMuKOq/eiVR6W8vLwGK+Kjatvv5rWptv/eX1v8Pvv81tZY4/PLJ1mfPrvrUy1s3GrN5aUtW7ZM3bp1V5jVNnfu3BVmsy3Xpk2blfavV69eWrRosdJtLrnkksyfP7/qNWvWrGIOAABinAFg7TPWAKwfas1MtwYNGqRr166ZMGFCBg4cWLV8woQJGTBgwEq36dGjRx588MFqy8aPH5/dd9899evXX+k2DRs2TMOGDYsrHAA+wjjDxs7sg/8wK5O1xVgDsH6oNTPdkuT888/PTTfdlFtuuSXTp0/Peeedl5kzZ+a0005L8uFfdI4//j//I3faaaflX//6V84///xMnz49t9xyS26++eZccMEFNXUIAAAAAGwEas1MtyQ58sgj8+abb+Z73/teZs+enZ122il/+MMfss022yRJZs+enZkzZ1b1b9++ff7whz/kvPPOy89//vNsueWW+elPf5pDDz20pg4BAAAAgI1ArQrdkmTIkCEZMmTISteNHj16hWW9evXKc889t5arAgAAAID/qFWXlwIAAABAbSB0AwAAAICCCd0AAAAAoGBCNwAAAAAoWK17kAIAAADUmFIpZUsX/6dZt35SVlaDBQHrK6EbAAAArKaypYtT8fwdVe35XY5OqV6DGqwIWF+5vBQAAAAACiZ0AwAAAICCCd0AAAAAoGBCNwAAAAAomNANAAAAAAomdAMAAACAggndAAAAAKBgQjcAAAAAKJjQDQAAAAAKJnQDAAAAgIIJ3QAAAACgYEI3AAAAACiY0A0AAAAACiZ0AwAAAICCCd0AAAAAoGBCNwAAAAAomNANAAAAAAomdAMAAACAggndAAAAAKBgQjcAAAAAKJjQDQAAAAAKJnQDAAAAgIIJ3QAAAACgYEI3AAAAACiY0A0AAAAAClavpgsAAChSkyZN8sADD1RrAwDAuiZ0AwA2KGVlZSkvL6/pMgAA2Mi5vBQAAAAACiZ0AwAAAICCCd0AAAAAoGBCNwAAAAAomNANAAAAAAomdAMAAACAgtVb3Y677rprysrKVqvvc889t8YFAQAAAEBtt9qh29e//vW1WAYAAAAAbDhWO3T77ne/uzbrAAAAAIANhnu6AQAAAEDBVnum20ctXbo01157be6+++7MnDkzixYtqrb+rbfeKqQ4AAAAAKiN1mim2xVXXJFrrrkmRxxxRObPn5/zzz8/hxxySOrUqZPLL7+84BIBAAAAoHZZo5luY8aMyciRI3PwwQfniiuuyNFHH50vfvGL6dKlSyZNmpSzzz676DoBAGCD0qRJkzzwwAPV2rA+m3L18TVdwnrh3XffzYABd1S1H73yqJSXl9dgRcD6ao1mus2ZMyedO3dOkpSXl2f+/PlJkn79+uWhhx4qrjoAANhAlZWVpby8vOpVVlZW0yUBAAVao9Btq622yuzZs5MkHTp0yPjx45Mkzz77bBo2bFhcdQAAAABQC61R6DZw4MA8/PDDSZJzzjknQ4cOzXbbbZfjjz8+J510UqEFAgAAAEBts0b3dPvhD39Y9fVhhx2WrbbaKhMnTkyHDh3yta99rbDiAAAAAKA2WqPQ7eO6d++e7t27F7ErAAAAAKj11ih0u+222z5x/fHHe6oNAAAAABuvNQrdzjnnnGrtxYsX57333kuDBg2yySabCN0AAAAA2Kit0YMU5s2bV+317rvvZsaMGdl7771zxx13FF0jAAAAANQqaxS6rcx2222XH/7whyvMggMAAACAjU1hoVuS1K1bN6+++mqRu6wyb968DBo0KBUVFamoqMigQYPy9ttvr7L/4sWL8+1vfzudO3dOkyZNsuWWW+b4449fa/UBAAAAwHJrdE+33/3ud9XapVIps2fPzs9+9rPstddehRT2ccccc0z+/e9/Z+zYsUmSU089NYMGDcqDDz640v7vvfdennvuuQwdOjQ777xz5s2bl3PPPTdf+9rXMnny5LVSIwAAAAAkaxi6ff3rX6/WLisry+abb54vf/nLGT58eBF1VTN9+vSMHTs2kyZNyp577pkkGTlyZHr06JEZM2Zkhx12WGGbioqKTJgwodqy6667Lt26dcvMmTOz9dZbF14nAAAAACRrGLotW7as6Do+0VNPPZWKioqqwC1JunfvnoqKikycOHGlodvKzJ8/P2VlZdl0001X2WfhwoVZuHBhVXvBggVrXDcAfJxxBoC1zVgDsH4o9J5ua8ucOXPSqlWrFZa3atUqc+bMWa19fPDBB7n44otzzDHHpFmzZqvsN2zYsKr7xlVUVKRt27ZrXDcAfJxxBoC1zVgDsH5Y7Zlu559//mrv9JprrlmtfpdffnmuuOKKT+zz7LPPJvnwEtaPK5VKK13+cYsXL85RRx2VZcuW5frrr//Evpdcckm1Y12wYIFBCoDCGGcAWNuMNQDrh9UO3aZOnVqtPWXKlCxdurTq0s6///3vqVu3brp27brab37mmWfmqKOO+sQ+7dq1y/PPP5/XXntthXWvv/56Wrdu/YnbL168OEcccUT++c9/5s9//vMnznJLkoYNG6Zhw4afXjwArAHjDABrm7EGYP2w2qHbI488UvX1Nddck6ZNm+bWW29N8+bNkyTz5s3LN77xjeyzzz6r/eYtW7ZMy5YtP7Vfjx49Mn/+/DzzzDPp1q1bkuTpp5/O/Pnz07Nnz1Vutzxw+8c//pFHHnkkLVq0WO3aAAAAAGBNrdE93YYPH55hw4ZVBW5J0rx58/z3f//3Wnl6aadOnXLggQfmlFNOyaRJkzJp0qSccsop6devX7WHKHTs2DG//e1vkyRLlizJYYcdlsmTJ2fMmDFZunRp5syZkzlz5mTRokWF1wgAAAAAy61R6LZgwYKVXu45d+7cvPPOO5+7qJUZM2ZMOnfunD59+qRPnz7p0qVLfvWrX1XrM2PGjMyfPz9J8u9//zu/+93v8u9//zu77LJLtthii6rXxIkT10qNAAAAAJB8hstLP2rgwIH5xje+keHDh6d79+5JkkmTJuXCCy/MIYccUmiBy2222Wa5/fbbP7FPqVSq+rpdu3bV2gAAAACwrqxR6HbjjTfmggsuyHHHHZfFixd/uKN69TJ48OBcffXVhRYIAAAAALXNGoVum2yySa6//vpcffXVefnll1MqldKhQ4c0adKk6PoAAAAAoNZZo9BtuSZNmqRLly5F1QIAAAAAG4TVDt0OOeSQjB49Os2aNfvU+7bdd999n7swAAAAAKitVjt0q6ioSFlZWdXXAAAAAMDKrXboNmrUqJV+DQAAAABUV2dNNnr//ffz3nvvVbX/9a9/ZcSIERk/fnxhhQEAAABAbbVGoduAAQNy2223JUnefvvtdOvWLcOHD8+AAQNyww03FFogAAAAANQ2a/T00ueeey7XXnttkuSee+5JmzZtMnXq1Nx777257LLLcvrppxdaJMCamHL18TVdwmfy7rvvZsCAO6raj155VMrLy2uwIgAAANbUGs10e++999K0adMkyfjx43PIIYekTp066d69e/71r38VWiAAAAAA1DZrFLp16NAh999/f2bNmpVx48alT58+SZK5c+emWbNmhRYIAAAAALXNGoVul112WS644IK0a9cu3bp1S48ePZJ8OOtt1113LbRAAAAAAKht1uiebocddlj23nvvzJ49OzvvvHPV8q985SsZOHBgYcUBAAAAQG20RjPdkqRNmzZp2rRpJkyYkPfffz9Jsscee6Rjx46FFQcAAAAAtdEahW5vvvlmvvKVr2T77bfPQQcdlNmzZydJTj755HzrW98qtEAAAAAAqG3WKHQ777zzUr9+/cycOTObbLJJ1fIjjzwyY8eOLaw4AAAAAKiN1uiebuPHj8+4ceOy1VZbVVu+3Xbb5V//+lchhQEAAABAbbVGM90qKyurzXBb7o033kjDhg0/d1EAAAAAUJutUei277775rbbbqtql5WVZdmyZbn66quz//77F1YcAAAAANRGa3R56Y9//OP06tUrkydPzqJFi3LRRRflxRdfzFtvvZUnn3yy6BoBAABgvdCkSZM88MAD1doAK/OZQ7fFixdnyJAh+d3vfpc//vGPqVu3biorK3PIIYfkjDPOyBZbbLE26gQAAIAaV1ZWlvLy8pouA6gFPnPoVr9+/bzwwgtp0aJFrrjiirVREwAAAADUamt0T7fjjz8+N998c9G1AAAAAMAGYY3u6bZo0aLcdNNNmTBhQnbfffcVrmG/5pprCikOAAAAAGqjNQrdXnjhhey2225Jkr///e/V1pWVlX3+qgAAAACgFluj0O2RRx4pug4AAAAA2GCs0T3dAAAAAIBVE7oBAAAAQMGEbgAAAABQMKEbAAAAABRM6AYAAAAABRO6AQAAAEDBhG4AAAAAUDChGwAAAAAUTOgGAAAAAAUTugEAAABAwYRuAAAAAFAwoRsAAAAAFEzoBgAAAAAFE7oBAAAAQMGEbgAAAABQMKEbAAAAABRM6AYAAAAABRO6AQAAAEDBhG4AAAAAUDChGwAAAAAUTOgGAAAAAAUTugEAAABAwYRuAAAAAFAwoRsAAAAAFEzoBgAAAAAFE7oBAAAAQMGEbgAAAABQMKEbAAAAABSs1oRu8+bNy6BBg1JRUZGKiooMGjQob7/99mpv/81vfjNlZWUZMWLEWqsRAAAAAJJaFLodc8wxmTZtWsaOHZuxY8dm2rRpGTRo0Gpte//99+fpp5/OlltuuZarBAAAAICkXk0XsDqmT5+esWPHZtKkSdlzzz2TJCNHjkyPHj0yY8aM7LDDDqvc9v/+7/9y5plnZty4cTn44IPXVckAAAAAbMRqRej21FNPpaKioipwS5Lu3bunoqIiEydOXGXotmzZsgwaNCgXXnhhvvSlL63Wey1cuDALFy6sai9YsODzFQ/rQqmUsqWL/9OsWz8pK6vBgoBVMc4AsLYZawDWD7Xi8tI5c+akVatWKyxv1apV5syZs8rtfvSjH6VevXo5++yzV/u9hg0bVnXfuIqKirRt23aNaoZ1qWzp4lQ8f0fV66MBHLB+Mc4AsLYZawDWDzUaul1++eUpKyv7xNfkyZOTJGUrmbVTKpVWujxJpkyZkp/85CcZPXr0KvuszCWXXJL58+dXvWbNmrVmBwcAK2GcAWBtM9YArB9q9PLSM888M0cdddQn9mnXrl2ef/75vPbaayuse/3119O6deuVbvf4449n7ty52XrrrauWLV26NN/61rcyYsSIvPLKKyvdrmHDhmnYsOHqHwQAfAbGGQDWNmMNwPqhRkO3li1bpmXLlp/ar0ePHpk/f36eeeaZdOvWLUny9NNPZ/78+enZs+dKtxk0aFB69+5dbVnfvn0zaNCgfOMb3/j8xQMAAADAKtSKByl06tQpBx54YE455ZT84he/SJKceuqp6devX7WHKHTs2DHDhg3LwIED06JFi7Ro0aLafurXr582bdp84tNOAQAAAODzqhUPUkiSMWPGpHPnzunTp0/69OmTLl265Fe/+lW1PjNmzMj8+fNrqEIAAAAA+FCtmOmWJJtttlluv/32T+xTKpU+cf2q7uMGAAAAAEWqNTPdAAAAAKC2ELoBAAAAQMGEbgAAAABQMKEbAAAAABRM6AYAAAAABRO6AQAAAEDBhG4AAAAAUDChGwAAAAAUTOgGAAAAAAUTugEAAABAwYRuAAAAAFAwoRsAAAAAFEzoBgAAAAAFE7oBAAAAQMGEbgAAAABQMKEbAAAAABRM6AYAAAAABRO6AQAAAEDBhG4AAAAAUDChGwAAAAAUTOgGAAAAAAUTugEAAABAwYRuAAAAAFAwoRsAAAAAFEzoBgAAAAAFE7oBAAAAQMHq1XQBAHyoSZMmeeCBB6q1AQAAqJ2EbgDribKyspSXl9d0GQAAABTA5aUAAAAAUDChGwAAAAAUTOgGAAAAAAUTugEAAABAwYRuAAAAAFAwoRsAAAAAFEzoBgAAAAAFE7oBAAAAQMGEbgAAAABQMKEbAAAAABRM6AYAAAAABRO6AQAAAEDBhG4AAAAAUDChGwAAAAAUTOgGAAAAAAUTugEAAABAwYRuAAAAAFAwoRsAAAAAFEzoBgAAAAAFE7oBAAAAQMGEbgAAAABQsHo1XQCsj6ZcfXxNl/CZvPvuuxkw4I6q9qNXHpXy8vIarAgAAAA2bma6AQAAAEDBhG4AAAAAUDChGwAAAAAUTOgGAAAAAAUTugEAAABAwWpN6DZv3rwMGjQoFRUVqaioyKBBg/L2229/6nbTp0/P1772tVRUVKRp06bp3r17Zs6cufYLBgAAAGCjVWtCt2OOOSbTpk3L2LFjM3bs2EybNi2DBg36xG1efvnl7L333unYsWMeffTR/OUvf8nQoUPTqFGjdVQ1AAAAABujejVdwOqYPn16xo4dm0mTJmXPPfdMkowcOTI9evTIjBkzssMOO6x0u0svvTQHHXRQrrrqqqpl22677TqpGQAAAICNV62Y6fbUU0+loqKiKnBLku7du6eioiITJ05c6TbLli3LQw89lO233z59+/ZNq1atsueee+b+++//xPdauHBhFixYUO0FAEUxzgCwthlrANYPtSJ0mzNnTlq1arXC8latWmXOnDkr3Wbu3Ll5991388Mf/jAHHnhgxo8fn4EDB+aQQw7JY489tsr3GjZsWNV94yoqKtK2bdvCjgMAjDMArG3GGoD1Q42GbpdffnnKyso+8TV58uQkSVlZ2Qrbl0qllS5PPpzpliQDBgzIeeedl1122SUXX3xx+vXrlxtvvHGVNV1yySWZP39+1WvWrFkFHCkAfMg4A8DaZqwBWD/U6D3dzjzzzBx11FGf2Kddu3Z5/vnn89prr62w7vXXX0/r1q1Xul3Lli1Tr1697LjjjtWWd+rUKU888cQq369hw4Zp2LDhalQPAJ+dcQaAtc1YA7B+qNHQrWXLlmnZsuWn9uvRo0fmz5+fZ555Jt26dUuSPP3005k/f3569uy50m0aNGiQPfbYIzNmzKi2/O9//3u22Wabz188AAAAAKxCrbinW6dOnXLggQfmlFNOyaRJkzJp0qSccsop6devX7Unl3bs2DG//e1vq9oXXnhh7rrrrowcOTL/+7//m5/97Gd58MEHM2TIkJo4DAAAAAA2ErUidEuSMWPGpHPnzunTp0/69OmTLl265Fe/+lW1PjNmzMj8+fOr2gMHDsyNN96Yq666Kp07d85NN92Ue++9N3vvvfe6Lh8AAACAjUiNXl76WWy22Wa5/fbbP7FPqVRaYdlJJ52Uk046aW2VBQAAAAArqDUz3QAAAACgthC6AQAAAEDBhG4AAAAAUDChGwAAAAAUTOgGAAAAAAUTugEAAABAwYRuAAAAAFAwoRsAAAAAFEzoBgAAAAAFE7oBAAAAQMGEbgAAAABQMKEbAAAAABRM6AYAAAAABRO6AQAAAEDBhG4AAAAAUDChGwAAAAAUTOgGAAAAAAUTugEAAABAwYRuAAAAAFAwoRsAAAAAFEzoBgAAAAAFE7oBAAAAQMGEbgAAAABQMKEbAAAAABRM6AYAAAAABRO6AQAAAEDBhG4AAAAAUDChGwAAAAAUTOgGAAAAAAUTugEAAABAwYRuAAAAAFAwoRsAAAAAFEzoBgAAAAAFE7oBAAAAQMGEbgAAAABQMKEbAAAAABRM6AYAAAAABRO6AQAAAEDBhG4AAAAAUDChGwAAAAAUTOgGAAAAAAUTugEAAABAwerVdAHA59ekSZM88MAD1doAAABAzRG6wQagrKws5eXlNV0GAAAA8P9zeSkAAAAAFEzoBgAAAAAFE7oBAAAAQMGEbgAAAABQMKEbAAAAABRM6AYAAAAABRO6AQAAAEDBhG4AAAAAUDChGwAAAAAUTOgGAAAAAAUTugEAAABAwYRuAAAAAFAwoRsAAAAAFKxeTRewviuVSkmSBQsW1HAlABuG5b9Pl/9+3dgZZwCKZZxZkbEGoFirO9YI3T7FO++8kyRp27ZtDVcCsGF55513UlFRUdNl1DjjDMDaYZz5D2MNwNrxaWNNWcmfgD7RsmXL8uqrr6Zp06YpKyur6XLWigULFqRt27aZNWtWmjVrVtPlsIb8HDcMG8PPsVQq5Z133smWW26ZOnXc5WBjGGdqwsbwWWLD4FwtnnFmRcaa4vnsUls4V9eO1R1rzHT7FHXq1MlWW21V02WsE82aNfMh3AD4OW4YNvSfo5kH/7ExjTM1YUP/LLHhcK4WyzhTnbFm7fHZpbZwrhZvdcYaf/oBAAAAgIIJ3QAAAACgYEI30rBhw3z3u99Nw4YNa7oUPgc/xw2DnyMUw2eJ2sK5CrWTzy61hXO1ZnmQAgAAAAAUzEw3AAAAACiY0A0AAAAACiZ0AwAAAICCCd0AgI3GiSeemK9//es1XQa1UKlUyqmnnprNNtssZWVlmTZtWo3U8corr9To+wNrpl27dhkxYkRVu6ysLPfff3+N1QOfxX777Zdzzz23psuolYRuG5GJEyembt26OfDAA1fZ59e//nXq1q2b0047bR1Wxuc1Z86cnHXWWdl2223TsGHDtG3bNv3798/DDz9c06WxGlYVAjz66KMpKyvL22+/vc5rAqC6sWPHZvTo0fn973+f2bNnZ6eddqrpkmCjNnfu3Hzzm9/M1ltvnYYNG6ZNmzbp27dvnnrqqSTrf6g1e/bsfPWrX63pMqghZWVln/g68cQTa7pEClKvpgtg3bnlllty1lln5aabbsrMmTOz9dZbr7TPRRddlBtuuCHXXHNNNtlkkxqolM/ilVdeyV577ZVNN900V111Vbp06ZLFixdn3LhxOeOMM/K3v/2tpksEgFrv5ZdfzhZbbJGePXvWdClAkkMPPTSLFy/Orbfemm233TavvfZaHn744bz11ls1XdpqadOmTU2XQA2aPXt21dd33XVXLrvsssyYMaNqWePGjav1X7x4cerXr7/O6qM4ZrptJCorK3P33Xfn9NNPT79+/TJ69OgV+rzyyiuZOHFiLr744nTs2DH33HPPui+Uz2zIkCEpKyvLM888k8MOOyzbb799vvSlL+X888/PpEmTaro8gDW233775ayzzsq5556b5s2bp3Xr1vnlL3+ZysrKfOMb30jTpk3zxS9+MX/84x+TJEuXLs3gwYPTvn37NG7cODvssEN+8pOffOJ7lEqlXHXVVdl2223TuHHj7LzzzsY/VnDiiSfmrLPOysyZM1NWVpZ27dp96rmzfLbyuHHjsuuuu6Zx48b58pe/nLlz5+aPf/xjOnXqlGbNmuXoo4/Oe++9V7Xd2LFjs/fee2fTTTdNixYt0q9fv7z88sufWN9LL72Ugw46KOXl5WndunUGDRqUN954Y619P6Cmvf3223niiSfyox/9KPvvv3+22WabdOvWLZdcckkOPvjgtGvXLkkycODAqs9s8mF4PmDAgLRu3Trl5eXZY4898qc//alqv5dcckm6d+++wvt16dIl3/3ud5Os/DK7r3/969VmJs2dOzf9+/dP48aN0759+4wZM2aFfX50Jt7yy8bvu+++7L///tlkk02y8847V83aW27ixInZd99907hx47Rt2zZnn312KisrP+N3j/VBmzZtql4VFRUpKyuran/wwQfZdNNNc/fdd2e//fZLo0aNcvvtt+fyyy/PLrvsUm0/I0aMqDq/x40bl0aNGq1wlczZZ5+dXr16JUnefPPNHH300dlqq62yySabpHPnzrnjjjuq9a+srMzxxx+f8vLybLHFFhk+fPgK9d9+++3Zfffd07Rp07Rp0ybHHHNM5s6dW9j3Z0MidNtI3HXXXdlhhx2yww475LjjjsuoUaNSKpWq9bnlllty8MEHp6KiIscdd1xuvvnmGqqW1fXWW29l7NixOeOMM9KkSZMV1m+66abrviiAAt16661p2bJlnnnmmZx11lk5/fTTc/jhh6dnz5557rnn0rdv3wwaNCjvvfdeli1blq222ip33313XnrppVx22WX5r//6r9x9992r3P93vvOdjBo1KjfccENefPHFnHfeeTnuuOPy2GOPrcOjZH33k5/8JN/73vey1VZbZfbs2Xn22WdX+9y5/PLL87Of/SwTJ07MrFmzcsQRR2TEiBH59a9/nYceeigTJkzIddddV9W/srIy559/fp599tk8/PDDqVOnTgYOHJhly5attLbZs2enV69e2WWXXTJ58uSMHTs2r732Wo444oi1+j2BmlReXp7y8vLcf//9Wbhw4Qrrn3322STJqFGjqj6zSfLuu+/moIMOyp/+9KdMnTo1ffv2Tf/+/TNz5swkybHHHpunn366WtD94osv5q9//WuOPfbY1a7vxBNPzCuvvJI///nPueeee3L99devViBx6aWX5oILLsi0adOy/fbb5+ijj86SJUuSJH/961/Tt2/fHHLIIXn++edz11135YknnsiZZ5652nVRu3z729/O2WefnenTp6dv376f2r93797ZdNNNc++991YtW7p0ae6+++6q8/eDDz5I165d8/vf/z4vvPBCTj311AwaNChPP/101TYXXnhhHnnkkfz2t7/N+PHj8+ijj2bKlCnV3mvRokW58sor85e//CX3339//vnPf7okdlVKbBR69uxZGjFiRKlUKpUWL15catmyZWnChAlV65cuXVpq27Zt6f777y+VSqXS66+/Xqpfv37pH//4R43Uy+p5+umnS0lK9913X02XwudwwgknlOrWrVtq0qRJtVejRo1KSUrz5s2r6RKhRvTq1au09957V7WXLFlSatKkSWnQoEFVy2bPnl1KUnrqqadWuo8hQ4aUDj300Kr2CSecUBowYECpVCqV3n333VKjRo1KEydOrLbN4MGDS0cffXSBR8KG4Nprry1ts802pVJp9c6dRx55pJSk9Kc//alq/bBhw0pJSi+//HLVsm9+85ulvn37rvJ9586dW0pS+utf/1oqlUqlf/7zn6UkpalTp5ZKpVJp6NChpT59+lTbZtasWaUkpRkzZqzx8cL67p577ik1b9681KhRo1LPnj1Ll1xySekvf/lL1fokpd/+9refup8dd9yxdN1111W1u3TpUvre975X1b7kkktKe+yxR1W7V69epXPOOafaPgYMGFA64YQTSqVSqTRjxoxSktKkSZOq1k+fPr2UpHTttdeutL7ln+ubbrqpav2LL75YSlKaPn16qVQqlQYNGlQ69dRTq73v448/XqpTp07p/fff/9TjZP01atSoUkVFRVV7+fmw/N/vy333u98t7bzzztWWfXRsKpVKpbPPPrv05S9/uao9bty4UoMGDUpvvfXWKt//oIMOKn3rW98qlUql0jvvvFNq0KBB6c4776xa/+abb5YaN268wnn/Uc8880wpSemdd975hCPdOJnpthGYMWNGnnnmmRx11FFJknr16uXII4/MLbfcUtVn/PjxqaysrLqZZ8uWLdOnT59qfVj/lP7/2YplZWU1XAmf1/77759p06ZVe9100001XRbUuC5dulR9Xbdu3bRo0SKdO3euWta6deskqZpBcOONN2b33XfP5ptvnvLy8owcObJqBsPHvfTSS/nggw9ywAEHVM2aKC8vz2233fapl/Oxcfss585Hz+HWrVtnk002ybbbbltt2UdnwLz88ss55phjsu2226ZZs2Zp3759kqzyPJ4yZUoeeeSRanV07Nixal+woTr00EPz6quv5ne/+1369u2bRx99NLvttttKb6OzXGVlZS666KLsuOOO2XTTTVNeXp6//e1v1T5fxx57bNXloKVSKXfcccdnmuU2ffr01KtXL7vvvnvVso4dO67WFSgf/X2xxRZbJPnP+DZlypSMHj262me9b9++WbZsWf75z3+udn3UHh89h1bXsccem0cffTSvvvpqkmTMmDE56KCD0rx58yQfznz7/ve/ny5duqRFixYpLy/P+PHjqz4DL7/8chYtWpQePXpU7XOzzTbLDjvsUO19pk6dmgEDBmSbbbZJ06ZNs99++yVZ9Vi1MfMghY3AzTffnCVLluQLX/hC1bJSqZT69etn3rx5ad68eW655Za89dZb1R6csGzZskydOjVXXnll6tatWxOl8ym22267lJWVZfr06St9+iW1R5MmTdKhQ4dqy/7973/XUDWw/vj4TYPLysqqLVv+R4dly5bl7rvvznnnnZfhw4enR48eadq0aa6++upql0x81PLL9R566KFqY2SSNGzYsMjDYAPzWc6dj5+vKzunP3rpaP/+/dO2bduMHDkyW265ZZYtW5addtopixYtWmUt/fv3z49+9KMV1i3/RztsqBo1apQDDjggBxxwQC677LKcfPLJ+e53v7vKy9wuvPDCjBs3Lj/+8Y/ToUOHNG7cOIcddli1z9cxxxyTiy++OM8991zef//9zJo1q2ryQpLUqVNnhdv0LF68uOrrz/NH8VWNb8v/+81vfjNnn332Ctut7AF51H4fv33Qp517SdKtW7d88YtfzJ133pnTTz89v/3tbzNq1Kiq9cOHD8+1116bESNGpHPnzmnSpEnOPffcqs/Ax/e/MpWVlenTp0/69OmT22+/PZtvvnlmzpyZvn37rnKs2pgJ3TZwS5YsyW233Zbhw4enT58+1dYdeuihGTNmTI4++ug88MADufPOO/OlL32pav2yZcuyzz775I9//GP69eu3rktnNWy22Wbp27dvfv7zn+fss89e4Rfz22+/7b5uwEbj8ccfT8+ePTNkyJCqZZ8002fHHXdMw4YNM3PmzKobDMPqWFvnzptvvpnp06fnF7/4RfbZZ58kyRNPPPGJ2+y222659957065du9Sr53/t2bjtuOOOVQ8nqF+/fpYuXVpt/eOPP54TTzwxAwcOTPLhPd5eeeWVan222mqr7LvvvhkzZkzef//99O7du2pWdZJsvvnm1Z48uXTp0rzwwgvZf//9kySdOnXKkiVLMnny5HTr1i3Jh1ceffzm9p/VbrvtlhdffHGFP9Ky8dh8880zZ86clEqlqlB22rRpK/Q75phjMmbMmGy11VapU6dODj744Kp1jz/+eAYMGJDjjjsuyYf/5v/HP/6RTp06JUk6dOiQ+vXrZ9KkSVVh7rx58/L3v/+9arz729/+ljfeeCM//OEP07Zt2yTJ5MmT19px13ZG5g3c73//+8ybNy+DBw9ORUVFtXWHHXZY1Sy4Fi1a5PDDD0+dOtWvOO7Xr19uvvlmodt67Prrr0/Pnj3TrVu3fO9730uXLl2yZMmSTJgwITfccEOmT59e0yUCrBMdOnTIbbfdlnHjxqV9+/b51a9+lWeffbbq8ryPa9q0aS644IKcd955WbZsWfbee+8sWLAgEydOTHl5eU444YR1fATUFmvr3GnevHlatGiRX/7yl9liiy0yc+bMXHzxxZ+4zRlnnJGRI0fm6KOPzoUXXpiWLVvmf//3f3PnnXdm5MiRrlZgg/Tmm2/m8MMPz0knnZQuXbqkadOmmTx5cq666qoMGDAgSdKuXbs8/PDD2WuvvdKwYcM0b948HTp0yH333Zf+/funrKwsQ4cOXelDSo499thcfvnlWbRoUa699tpq67785S/n/PPPz0MPPZQvfvGLufbaa6sFajvssEMOPPDAnHLKKfnlL3+ZevXq5dxzz03jxo0/1zF/+9vfTvfu3XPGGWfklFNOSZMmTTJ9+vQVHsbChmu//fbL66+/nquuuiqHHXZYxo4dmz/+8Y9p1qxZtX7HHntsrrjiinz/+9/PYYcdlkaNGlWt69ChQ+69995MnDgxzZs3zzXXXJM5c+ZUhW7l5eUZPHhwLrzwwrRo0SKtW7fOpZdeWi0n2HrrrdOgQYNcd911Oe200/LCCy/kyiuvXDffhFrIPd02cDfffHN69+69QuCWfDjTbdq0abnssssycODAFQK35X1+//vf57XXXlsX5bIG2rdvn+eeey77779/vvWtb2WnnXbKAQcckIcffjg33HBDTZcHsM6cdtppOeSQQ3LkkUdmzz33zJtvvllt1tvKXHnllbnssssybNiwdOrUKX379s2DDz64yqAOllsb506dOnVy5513ZsqUKdlpp51y3nnn5eqrr/7Ebbbccss8+eSTWbp0afr27Zuddtop55xzTioqKlb6/3awISgvL8+ee+6Za6+9Nvvuu2922mmnDB06NKecckp+9rOfJfnwMroJEyakbdu22XXXXZMk1157bZo3b56ePXumf//+6du3b3bbbbcV9n/44YfnzTffzHvvvbfCLVxOOumknHDCCTn++OPTq1evtG/fvmqW23KjRo1K27Zt06tXrxxyyCE59dRT06pVq891zF26dMljjz2Wf/zjH9lnn32y6667ZujQoS4j34h06tQp119/fX7+859n5513zjPPPJMLLrhghX7bbbdd9thjjzz//PMr3I9w6NCh2W233dK3b9/st99+adOmzQrn+NVXX5199903X/va19K7d+/svffe6dq1a9X6zTffPKNHj85vfvOb7LjjjvnhD3+YH//4x2vlmDcEZaXVuWgXAAAAAFht/vwFAAAAAAUTugEAAABAwYRuAAAAAFAwoRsAAAAAFEzoBgAAAAAFE7oBAAAAQMGEbgAAAABQMKEbAAAAABRM6AYAAACsNRMnTkzdunVz4IEHVlv+yiuvpKysrOpVUVGR7t2758EHH0yS7LffftXWf/zVrl27GjgaWH1CN6gFFi1aVNMlAAAArJFbbrklZ511Vp544onMnDlzhfV/+tOfMnv27Dz99NPp1q1bDj300Lzwwgu57777Mnv27MyePTvPPPNMtb6zZ8/Os88+u64PBT4ToRush/bbb7+ceeaZOf/889OyZcsccMABueaaa9K5c+c0adIkbdu2zZAhQ/Luu+9W2+7JJ59Mr169sskmm6R58+bp27dv5s2blyQplUq56qqrsu2226Zx48bZeeedc88999TE4QGwnrnnnnvSuXPnNG7cOC1atEjv3r1TWVmZJBk1alQ6deqURo0apWPHjrn++uurtjvppJPSpUuXLFy4MEmyePHidO3aNccee2yNHAcA65/KysrcfffdOf3009OvX7+MHj16hT4tWrRImzZt0rFjx3z/+9/P4sWL88gjj2SzzTZLmzZt0qZNm2y++ebV+n50GayvhG6wnrr11ltTr169PPnkk/nFL36ROnXq5Kc//WleeOGF3Hrrrfnzn/+ciy66qKr/tGnT8pWvfCVf+tKX8tRTT+WJJ55I//79s3Tp0iTJd77znYwaNSo33HBDXnzxxZx33nk57rjj8thjj9XUIQKwHpg9e3aOPvronHTSSZk+fXoeffTRHHLIISmVShk5cmQuvfTSfP/738/06dPzgx/8IEOHDs2tt96aJPnpT3+aysrKXHzxxUmSoUOH5o033qgWzAGwcbvrrruyww47ZIcddshxxx2XUaNGpVQqrbTv4sWLM3LkyCRJ/fr112WZsFaUlVZ1tgM1Zr/99sv8+fMzderUVfb5zW9+k9NPPz1vvPFGkuSYY47JzJkz88QTT6zQt7KyMi1btsyf//zn9OjRo2r5ySefnPfeey+//vWviz8IAGqF5557Ll27ds0rr7ySbbbZptq6rbfeOj/60Y9y9NFHVy377//+7/zhD3/IxIkTkyRPPfVUevXqlYsvvjjDhg3Lww8/nH333XedHgMA66+99torRxxxRM4555wsWbIkW2yxRe6444707t07r7zyStq3b5/GjRunTp06ef/997Ns2bK0a9cuU6ZMyWabbVa1n+V9p06dml122aXmDgg+g3o1XQCwcrvvvnu19iOPPJIf/OAHeemll7JgwYIsWbIkH3zwQSorK9OkSZNMmzYthx9++Er39dJLL+WDDz7IAQccUG35okWLsuuuu661YwBg/bfzzjvnK1/5Sjp37py+ffumT58+Oeyww7JkyZLMmjUrgwcPzimnnFLVf8mSJamoqKhq9+jRIxdccEGuvPLKfPvb3xa4AVBlxowZeeaZZ3LfffclSerVq5cjjzwyt9xyS3r37l3V76677krHjh3z97//Peeee25uvPHGaoEb1FZCN1hPNWnSpOrrf/3rXznooINy2mmn5corr8xmm22WJ554IoMHD87ixYuTJI0bN17lvpYtW5Ykeeihh/KFL3yh2rqGDRuuheoBqC3q1q2bCRMmZOLEiRk/fnyuu+66XHrppVVPjhs5cmT23HPPFbZZbtmyZXnyySdTt27d/OMf/1intQOwfrv55puzZMmSav8GKZVKqV+/ftW9p5Okbdu22W677bLddtulvLw8hx56aF566aW0atWqJsqGwrinG9QCkydPzpIlSzJ8+PB0794922+/fV599dVqfbp06ZKHH354pdvvuOOOadiwYWbOnJkOHTpUe7Vt23ZdHAIA67GysrLstddeueKKKzJ16tQ0aNAgTz75ZL7whS/k//2//7fC2NG+ffuqba+++upMnz49jz32WMaNG5dRo0bV4JEAsL5YsmRJbrvttgwfPjzTpk2rev3lL3/JNttskzFjxqx0u169emWnnXbK97///XVcMRTPTDeoBb74xS9myZIlue6669K/f/88+eSTufHGG6v1ueSSS9K5c+cMGTIkp512Who0aJBHHnkkhx9+eFq2bJkLLrgg5513XpYtW5a99947CxYsyMSJE1NeXp4TTjihho4MgJr29NNP5+GHH06fPn3SqlWrPP3003n99dfTqVOnXH755Tn77LPTrFmzfPWrX83ChQszefLkzJs3L+eff36mTZuWyy67LPfcc0/22muv/OQnP8k555yTXr16Zdttt63pQwOgBv3+97/PvHnzMnjw4Gq3JUiSww47LDfffHP69eu30m2/9a1v5fDDD89FF120wpU6UJuY6Qa1wC677JJrrrkmP/rRj7LTTjtlzJgxGTZsWLU+22+/fcaPH5+//OUv6datW3r06JEHHngg9ep9mK1feeWVueyyyzJs2LB06tQpffv2zYMPPlhttgIAG59mzZrlf/7nf3LQQQdl++23z3e+850MHz48X/3qV3PyySfnpptuyujRo9O5c+f06tUro0ePTvv27fPBBx/k2GOPzYknnpj+/fsnSQYPHpzevXtn0KBBVU/PBmDjdPPNN6d3794rBG5Jcuihh2batGl56623Vrptv3790q5dO7PdqPU8vRQAAAAACmamGwAAAAAUTOgGAAAAAAUTugEAAABAwYRuAAAAAFAwoRsAAAAAFEzoBgAAAAAFE7oBAAAAQMGEbgAAAABQMKEbAAAAABRM6AYAAAAABRO6AQAAAEDBhG4AAAAAULD/D7XQf97PF2XeAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, (race_ax, sex_ax, art_ax) = plt.subplots(1,3, sharey=True, figsize = (15, 5))\n",
"\n",
"race_ax.set_ylabel('residual')\n",
"\n",
"sns.barplot(x=data['race'], y=res.residuals_, ax=race_ax)\n",
"sns.barplot(x=data['sex'], y=res.residuals_, ax=sex_ax)\n",
"sns.barplot(x=data['ART'], y=res.residuals_, ax=art_ax)"
]
},
{
"cell_type": "markdown",
"id": "2e0a1f0c-7df8-40f8-ab6f-bb2e70eb7493",
"metadata": {},
"source": [
"Here we see some interesting patterns:\n",
" - The graph of race against residuals shows us that our model is signifacntly racially biased. AA individuals are significantly 'under-estimated' by the model, C individauals are significantly over-estimated, and H individuals are significantly over-estimated.\n",
" - The graph of sex shows that there is no real difference in the residuals. It has accounted for sex already.\n",
" - It looks like there is a real difference across ART."
]
},
{
"cell_type": "markdown",
"id": "7bc5658b-b99f-44f1-8746-495870be08a4",
"metadata": {},
"source": [
"## _ANCOVA_"
]
},
{
"cell_type": "markdown",
"id": "2bb494a9-d773-4f50-8c7a-52535f1684f8",
"metadata": {},
"source": [
"What we have done above is create a model that _accounts_ for the effects of age, education, and YS on EDZ.\n",
"We **subtracted** that effect (the predicted value) from the observed value thus creating the _residual_.\n",
"This is what is \"left over\" in the observed value after accounting for covariates or nuisance variables.\n",
"Then we plotted the _residual_ against each of our categorical variables.\n",
"If we then took the ANOVA of these residuals we'd be testing the hypothesis:\n",
" _When accounting for age, education, and YS is there a difference across race._\n",
" \n",
"This process is called an _Analysis of covariance_ or an **ANCOVA**."
]
},
{
"cell_type": "markdown",
"id": "2b088af3-35d1-4228-a38d-0ce0edd7de10",
"metadata": {},
"source": [
"### Standard first"
]
},
{
"cell_type": "markdown",
"id": "d4c97c10-cedb-4a4a-9568-c56dfe6b737d",
"metadata": {
"deletable": false,
"editable": false,
"tags": []
},
"source": [
"### Q4: Perform an ANOVA between ART on the Executive Domain Z-score."
]
},
{
"cell_type": "markdown",
"id": "ed969ccd-12ec-41b6-b6ba-cd6d7203208a",
"metadata": {
"deletable": false,
"editable": false,
"tags": [
"remove_cell"
]
},
"source": [
"| | |\n",
"| --------------|----|\n",
"| Points | 5 |\n",
"| Public Checks | 4 |\n",
"\n",
"_Points:_ 5"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "0cca7821-9925-43d1-a802-62a17217125e",
"metadata": {
"tags": [
"otter_assign_solution_cell"
]
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAGwCAYAAACq12GxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAuaElEQVR4nO3de1xU9b7/8feoCCQ6ighoEWimQoJ5SYG989Ix0NS0bbsUw+yCdjHLvLTJY3nquKn29mi7nV3M8qRUdtFyd6HsYg95cMvLiCaRuTUowbuDUuKF9fujn3OaQKRhhmFYr+fjsR7N+q7vd81nejyAt9/1nbUshmEYAgAAMKkW3i4AAADAmwhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1Fp5u4Cmrrq6Wvv27VPbtm1lsVi8XQ4AAKgHwzB0/PhxdenSRS1a1D33Qxi6gH379ikiIsLbZQAAABeUlpbqkksuqbMPYegC2rZtK+mX/5nt2rXzcjUAAKA+KioqFBER4fg7XhfC0AWcuzTWrl07whAAAD6mPktcWEANAABMjTAEAABMjTAEAABMjTAEAABMzefC0NKlS9W1a1cFBASof//+2rhx43n7lpWVKSUlRT179lSLFi30wAMPNF6hAADAJ/hUGFq9erUeeOABzZs3T1u3btXVV1+tkSNHqqSkpNb+VVVV6tSpk+bNm6c+ffo0crUAAMAXWAzDMLxdRH0NGjRI/fr103PPPedoi46O1rhx45SRkVHn2KFDh+rKK6/UkiVLftd7VlRUyGq1ym6389V6AAB8xO/5++0zM0OnTp3S5s2blZSU5NSelJSknJwct71PVVWVKioqnDYAANB8+UwYOnTokM6ePauwsDCn9rCwMJWXl7vtfTIyMmS1Wh0bj+IAAKB585kwdM5v7yRpGIZbH6Canp4uu93u2EpLS912bgAA0PT4zOM4QkJC1LJlyxqzQAcOHKgxW9QQ/v7+8vf3d9v5AABA0+YzM0OtW7dW//79tX79eqf29evXKzEx0UtVAQAAX+czM0OS9OCDDyo1NVUDBgxQQkKCXnzxRZWUlOiuu+6S9Mslrh9//FGvvvqqY4zNZpMknThxQgcPHpTNZlPr1q0VExPjjY8AAPACwzBUWVnp2G/Tpo1bl1jAt/lUGLr55pt1+PBhPfbYYyorK1Pv3r314YcfKjIyUtIvN1n87T2H+vbt63i9efNmvfbaa4qMjNTevXsbs3QAgBdVVlZq7Nixjv333ntPQUFBXqwITYlP3WfIG7jPEAD4vhMnThCGTKZZ3mcIAADAEwhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1AhDAADA1HwuDC1dulRdu3ZVQECA+vfvr40bN9bZ/8svv1T//v0VEBCgbt266fnnn2+kSgEAgC/wqTC0evVqPfDAA5o3b562bt2qq6++WiNHjlRJSUmt/ffs2aPrrrtOV199tbZu3aqHH35YM2bM0DvvvNPIlQMAgKbKYhiG4e0i6mvQoEHq16+fnnvuOUdbdHS0xo0bp4yMjBr9H3roIa1bt05FRUWOtrvuukvbtm1Tbm5uvd6zoqJCVqtVdrtd7dq1a/iHAAA0uhMnTmjs2LGO/ffee09BQUFerAie9nv+fvvMzNCpU6e0efNmJSUlObUnJSUpJyen1jG5ubk1+icnJ2vTpk06ffp0rWOqqqpUUVHhtAEAgOarlbcLqK9Dhw7p7NmzCgsLc2oPCwtTeXl5rWPKy8tr7X/mzBkdOnRInTt3rjEmIyND//Vf/+W+wuup/5xXG/09gaZu898me7sEt+Dn2/ssZ07J+qv9ofPfkNGqtdfqQdP6+faZmaFzLBaL075hGDXaLtS/tvZz0tPTZbfbHVtpaWkDKwYAAE2Zz8wMhYSEqGXLljVmgQ4cOFBj9uec8PDwWvu3atVKHTt2rHWMv7+//P393VM0AABo8nxmZqh169bq37+/1q9f79S+fv16JSYm1jomISGhRv9PPvlEAwYMkJ+fn8dqBQAAvsNnwpAkPfjgg3rppZf08ssvq6ioSDNnzlRJSYnuuusuSb9c4po8+f+uQd511136/vvv9eCDD6qoqEgvv/yyli9frtmzZ3vrIwAAgCbGZy6TSdLNN9+sw4cP67HHHlNZWZl69+6tDz/8UJGRkZKksrIyp3sOde3aVR9++KFmzpypZ599Vl26dNE//vEPjR8/3lsfAQAANDE+FYYk6Z577tE999xT67EVK1bUaBsyZIi2bNni4aoAAICv8qnLZAAAAO5GGAIAAKZGGAIAAKZGGAIAAKZGGAIAAKZGGAIAAKZGGAIAAKZGGAIAAKZGGAIAAKZGGAIAAKZGGAIAAKZGGAIAAKZGGAIAAKZGGAIAAKZGGAIAAKZGGAIAAKZGGAIAAKZGGAIAAKZGGAIAAKZGGAIAAKZGGAIAAKZGGAIAAKZGGAIAAKZGGAIAAKZGGAIAAKZGGAIAAKbWytsFAEBzt/lvk71dgumdOHFCY8e+7tjf8PgEBQUFebEiNCXMDAEAAFMjDAEAAFMjDAEAAFMjDAEAAFMjDAEAAFMjDAEAAFMjDAEAAFMjDAEAAFMjDAEAAFMjDAEAAFMjDAEAAFMjDAEAAFMjDAEAAFMjDAEAAFMjDAEAAFMjDAEAAFPzmTB09OhRpaamymq1ymq1KjU1VceOHatzzJo1a5ScnKyQkBBZLBbZbLZGqRUAAPgOnwlDKSkpstlsysrKUlZWlmw2m1JTU+scU1lZqT/84Q964oknGqlKAADga1p5u4D6KCoqUlZWlvLy8jRo0CBJ0rJly5SQkKDi4mL17Nmz1nHnwtLevXsbq1QAAOBjfGJmKDc3V1ar1RGEJCk+Pl5Wq1U5OTlufa+qqipVVFQ4bQAAoPnyiTBUXl6u0NDQGu2hoaEqLy9363tlZGQ41iVZrVZFRES49fwAAKBp8WoYWrBggSwWS53bpk2bJEkWi6XGeMMwam1viPT0dNntdsdWWlrq1vMDAICmxatrhqZPn64JEybU2ScqKkqFhYXav39/jWMHDx5UWFiYW2vy9/eXv7+/W88JAACaLq+GoZCQEIWEhFywX0JCgux2uwoKCjRw4EBJUn5+vux2uxITEz1dJgAAaMZ8Ys1QdHS0RowYobS0NOXl5SkvL09paWkaPXq00zfJevXqpbVr1zr2jxw5IpvNpp07d0qSiouLZbPZ3L7OCAAA+C6fCEOSlJmZqdjYWCUlJSkpKUlxcXFauXKlU5/i4mLZ7XbH/rp169S3b1+NGjVKkjRhwgT17dtXzz//fKPWDgAAmi6fuM+QJAUHB2vVqlV19jEMw2l/ypQpmjJligerAgAAvs5nZoYAAAA8gTAEAABMjTAEAABMjTAEAABMjTAEAABMjTAEAABMjTAEAABMjTAEAABMzaUwVFJSoqqqqhrt1dXVKikpaXBRAAAAjcWlMBQVFaV+/fpp9+7dTu0HDx5U165d3VIYAABAY3D5Mll0dLQGDhyozz77zKn9t4/EAAAAaMpcCkMWi0VLly7Vf/7nf2rUqFH6xz/+4XQMAADAV7j0oNZzsz8zZ85Ur169NHHiRBUWFuqRRx5xa3EAAACe1uCn1o8cOVI5OTm6/vrrVVBQ4I6aAAAAGo1Ll8mGDBmi1q1bO/ZjYmJUUFCgDh06sGYIAAD4FJfC0BdffKH27ds7tQUHB+vLL79UdXW1o+2JJ57QsWPHGlIfAACAR3n0pot//etfdeTIEU++BQAAQIN4NAxxyQwAADR1PI4DAACYGmEIAACYGmEIAACYGmEIAACYmkfD0NVXX63AwEBPvgUAAECDuHwH6urqan333Xc6cOCA072FJGnw4MGSpA8//LBh1QEAAHiYS2EoLy9PKSkp+v7772t8fd5isejs2bNuKQ4AAMDTXApDd911lwYMGKAPPvhAnTt35kn1AADAZ7kUhnbt2qW3335b3bt3d3c9AAAAjcqlBdSDBg3Sd9995+5aAAAAGp1LM0P33XefZs2apfLycsXGxsrPz8/peFxcnFuKAwAA8DSXwtD48eMlSbfffrujzWKxyDAMFlADAACf4lIY2rNnj7vrAAAA8AqXwlBkZKS76wAAAPCKeoehdevWaeTIkfLz89O6devq7Hv99dc3uDAAAIDGUO8wNG7cOJWXlys0NFTjxo07bz/WDAEAAF9S7zD060du/PbxGwAAAL6Kp9YDAABTc/lBrZWVlfryyy9VUlKiU6dOOR2bMWNGgwsDAABoDC6Foa1bt+q6667TTz/9pMrKSgUHB+vQoUO66KKLFBoaShgCAAA+w6XLZDNnztSYMWN05MgRBQYGKi8vT99//7369++vv//97+6uEQAAwGNcCkM2m02zZs1Sy5Yt1bJlS1VVVSkiIkJPPfWUHn74YXfXCAAA4DEuhSE/Pz9ZLBZJUlhYmEpKSiRJVqvV8RoAAMAXuLRmqG/fvtq0aZN69OihYcOG6ZFHHtGhQ4e0cuVKxcbGurtGAAAAj3FpZuivf/2rOnfuLEl6/PHH1bFjR9199906cOCAXnzxRbcWCAAA4EkuzQwNGDDA8bpTp0768MMP3VYQAABAY/KZmy4ePXpUqampslqtslqtSk1N1bFjx87b//Tp03rooYcUGxurNm3aqEuXLpo8ebL27dvXeEUDAIAmz6UwdPjwYd17772KiYlRSEiIgoODnTZPSElJkc1mU1ZWlrKysmSz2ZSamnre/j/99JO2bNmi+fPna8uWLVqzZo2+/fZbHiILAACcuHSZ7JZbbtHu3bt1xx13KCwszPHNMk8pKipSVlaW8vLyNGjQIEnSsmXLlJCQoOLiYvXs2bPGGKvVqvXr1zu1PfPMMxo4cKBKSkp06aWXerRmAADgG1wKQ9nZ2crOzlafPn3cXU+tcnNzZbVaHUFIkuLj42W1WpWTk1NrGKqN3W6XxWJR+/btz9unqqpKVVVVjv2KigqX6wYAAE2fS5fJevXqpZ9//tndtZxXeXm5QkNDa7SHhoaqvLy8Xuc4efKk/vKXvyglJUXt2rU7b7+MjAzHuiSr1aqIiAiX6wYAAE2fS2Fo6dKlmjdvnr788ksdPnxYFRUVTlt9LViwQBaLpc5t06ZNklTrpTjDMOp1ie706dOaMGGCqqurtXTp0jr7pqeny263O7bS0tJ6fx4AAOB7XLpM1r59e9ntdl1zzTVO7efCydmzZ+t1nunTp2vChAl19omKilJhYaH2799f49jBgwcVFhZW5/jTp0/rpptu0p49e/T555/XOSskSf7+/vL3979w8QAAoFlwKQxNmjRJrVu31muvvdagBdQhISEKCQm5YL+EhATZ7XYVFBRo4MCBkqT8/HzZ7XYlJiaed9y5ILRr1y598cUX6tixo0t1AgCA5sulMLRjxw5t3bq13guXGyo6OlojRoxQWlqaXnjhBUnS1KlTNXr0aKcaevXqpYyMDN1www06c+aMbrzxRm3ZskXvv/++zp4961hfFBwcrNatWzdK7QAAoGlzac3QgAEDGn0tTWZmpmJjY5WUlKSkpCTFxcVp5cqVTn2Ki4tlt9slST/88IPWrVunH374QVdeeaU6d+7s2HJychq1dgAA0HS5NDN033336f7779ecOXMUGxsrPz8/p+NxcXFuKe7XgoODtWrVqjr7GIbheB0VFeW0DwAAUBuXwtDNN98sSbr99tsdbRaL5XcvoAYAAPA2l8LQnj173F0HAAAe06ZNG7333ntO+8A5LoWhyMhId9cBAIDHWCwWBQUFebsMNFEuhSFJ2r17t5YsWaKioiJZLBZFR0fr/vvv12WXXebO+gAAADzKpW+Tffzxx4qJiVFBQYHi4uLUu3dv5efn64orrqjxcFQAAICmzKWZob/85S+aOXOmnnjiiRrtDz30kK699lq3FAcAAOBpLs0MFRUV6Y477qjRfvvtt2vnzp0NLgoAAKCxuBSGOnXqJJvNVqPdZrPV+nR5AACApsqly2RpaWmaOnWq/v3vfysxMVEWi0XZ2dl68sknNWvWLHfXCAAA4DEuhaH58+erbdu2WrRokdLT0yVJXbp00YIFCzRjxgy3Fgg0GsOQ5ezp/9tt6Se5+BBiAIDvcCkMWSwWzZw5UzNnztTx48clSW3btnVrYUBjs5w9LWvh6459e9xEGa14oC8ANHcu32foHEIQAADwZfUOQ3379pWlnpcMtmzZ4nJBAAAAjaneYWjcuHGO1ydPntTSpUsVExOjhIQESVJeXp6+/vpr3XPPPW4vEgAAwFPqHYYeffRRx+s777xTM2bM0OOPP16jT2lpqfuqAwAA8DCX7jP01ltvafLkyTXab7nlFr3zzjsNLgoAAKCxuBSGAgMDlZ2dXaM9OztbAQEBDS4KAACgsbj0bbIHHnhAd999tzZv3qz4+HhJv6wZevnll/XII4+4tUAAAABPcvlBrd26ddPTTz+t1157TZIUHR2tFStW6KabbnJrgQAAAJ7k8n2GbrrppgsGn9dff13XX3+92rRp4+rbAAAAeJRLa4bqa9q0adq/f78n3wIAAKBBPBqGDMPw5OkBAAAazKNhCAAAoKkjDAEAAFMjDAEAAFMjDAEAAFPzaBiKjIyUn5+fJ98CAACgQVy6z9BXX32l6upqDRo0yKk9Pz9fLVu21IABAyRJO3bsaHiFAAAAHuTSzNC9995b69Ppf/zxR917770NLgoAAKCxuBSGdu7cqX79+tVo79u3r3bu3NngogAAABqLS2HI39+/1jtLl5WVqVUrl5/wAQAA0OhcCkPXXnut0tPTZbfbHW3Hjh3Tww8/rGuvvdZtxQEAAHiaS9M4ixYt0uDBgxUZGam+fftKkmw2m8LCwrRy5Uq3FggAAOBJLoWhiy++WIWFhcrMzNS2bdsUGBio2267TRMnTuSr9AAAwKe4vMCnTZs2mjp1qjtrAQAAaHQu33Rx5cqV+uMf/6guXbro+++/lyQtXrxY7733ntuKAwAA8DSXwtBzzz2nBx98UCNHjtTRo0d19uxZSVKHDh20ZMkSd9YHAADgUS6FoWeeeUbLli3TvHnznL5KP2DAAG3fvt1txQEAAHiaS2Foz549jm+R/Zq/v78qKysbXBQAAEBjcSkMde3aVTabrUb7Rx99pJiYmIbWBAAA0Ghc+jbZnDlzdO+99+rkyZMyDEMFBQV6/fXXlZGRoZdeesndNQIAAHiMS2Hotttu05kzZzR37lz99NNPSklJ0cUXX6ynn35aEyZMcHeNAAAAHuPyfYbS0tKUlpamQ4cOqbq6WqGhoe6sCwAAoFG4tGZo/vz5jq/Th4SEOIKQ3W7XxIkT3Vfdrxw9elSpqamyWq2yWq1KTU3VsWPH6hyzYMEC9erVS23atFGHDh00fPhw5efne6Q+AADgm1wKQ6+++qr+8Ic/aPfu3Y62DRs2KDY2Vnv37nVXbU5SUlJks9mUlZWlrKws2Ww2paam1jmmR48e+uc//6nt27crOztbUVFRSkpK0sGDBz1SIwAA8D0uhaHCwkJFRUXpyiuv1LJlyzRnzhwlJSVpypQpys7OdneNKioqUlZWll566SUlJCQoISFBy5Yt0/vvv6/i4uLzjktJSdHw4cPVrVs3XXHFFfqf//kfVVRUqLCw0O01AgAA3+TSmiGr1ao33nhD8+bN07Rp09SqVSt99NFH+o//+A931ydJys3NldVq1aBBgxxt8fHxslqtysnJUc+ePS94jlOnTunFF1+U1WpVnz59ztuvqqpKVVVVjv2KioqGFQ8AAJo0l59N9swzz2jx4sWaOHGiunXrphkzZmjbtm3urM2hvLy81gXaoaGhKi8vr3Ps+++/r6CgIAUEBGjx4sVav369QkJCzts/IyPDsS7JarUqIiKiwfUDAICmy6UwNHLkSC1YsECvvvqqMjMztXXrVg0ePFjx8fF66qmn6n2eBQsWyGKx1Llt2rRJkmSxWGqMNwyj1vZfGzZsmGw2m3JycjRixAjddNNNOnDgwHn7p6eny263O7bS0tJ6fx4AAOB7XLpMdubMGW3fvl1dunSRJAUGBuq5557T6NGjdeedd2ru3Ln1Os/06dMveF+iqKgoFRYWav/+/TWOHTx4UGFhYXWOb9Omjbp3767u3bsrPj5el19+uZYvX6709PRa+/v7+8vf379e9QMAAN/nUhhav369Nm7cqLlz52r37t16++23dfHFF+vIkSN68803632ekJCQOi9ZnZOQkCC73a6CggINHDhQkpSfny+73a7ExMTfVbthGE5rggAAgLm5dJnsnXfeUXJysgIDA7V161ZHuDh+/LgyMjLcWqAkRUdHa8SIEUpLS1NeXp7y8vKUlpam0aNHOy2e7tWrl9auXStJqqys1MMPP6y8vDx9//332rJli+6880798MMP+vOf/+z2GgEAgG9yKQz993//t55//nktW7ZMfn5+jvbExERt2bLFbcX9WmZmpmJjY5WUlKSkpCTFxcVp5cqVTn2Ki4tlt9slSS1bttQ333yj8ePHq0ePHho9erQOHjyojRs36oorrvBIjQAAwPe4dJmsuLhYgwcPrtHerl27C94V2lXBwcFatWpVnX0Mw3C8DggI0Jo1azxSCwAAaD5cmhnq3Lmzvvvuuxrt2dnZ6tatW4OLAgAAaCwuhaFp06bp/vvvV35+viwWi/bt26fMzEzNnj1b99xzj7trBAAA8BiXLpPNnTtXdrtdw4YN08mTJzV48GD5+/tr9uzZmj59urtrBAAA8BiXwpAkLVy4UPPmzdPOnTtVXV2tmJgYBQUFubM2AAAAj3M5DEnSRRddpAEDBrirFgAAgEbn8rPJAAAAmgPCEAAAMDXCEAAAMDXCEAAAMDXCEAAAMDXCEAAAMDXCEAAAMDXCEAAAMDXCEAAAMDXCEAAAMDXCEAAAMDXCEAAAMDXCEAAAMDXCEAAAMDXCEAAAMDXCEAAAMDXCEAAAMDXCEAAAMDXCEAAAMDXCEAAAMDXCEAAAMDXCEAAAMDXCEAAAMDXCEAAAMDXCEAAAMDXCEAAAMDXCEAAAMDXCEAAAMDXCEAAAMLVW3i4Av9j8t8neLsH0Tpw4obFjX3fsb3h8goKCgrxYEQCgMTAzBAAATI0wBAAATI0wBAAATI0wBAAATI0wBAAATI0wBAAATI0wBAAATI0wBAAATI0wBAAATM1nwtDRo0eVmpoqq9Uqq9Wq1NRUHTt2rN7jp02bJovFoiVLlnisRgAA4Ht8JgylpKTIZrMpKytLWVlZstlsSk1NrdfYd999V/n5+erSpYuHqwQAAL7GJ55NVlRUpKysLOXl5WnQoEGSpGXLlikhIUHFxcXq2bPnecf++OOPmj59uj7++GONGjWqsUoGAAA+widmhnJzc2W1Wh1BSJLi4+NltVqVk5Nz3nHV1dVKTU3VnDlzdMUVV9TrvaqqqlRRUeG0AQCA5ssnwlB5eblCQ0NrtIeGhqq8vPy845588km1atVKM2bMqPd7ZWRkONYlWa1WRUREuFQzAADwDV4NQwsWLJDFYqlz27RpkyTJYrHUGG8YRq3tkrR582Y9/fTTWrFixXn71CY9PV12u92xlZaWuvbhAACAT/DqmqHp06drwoQJdfaJiopSYWGh9u/fX+PYwYMHFRYWVuu4jRs36sCBA7r00ksdbWfPntWsWbO0ZMkS7d27t9Zx/v7+8vf3r/+HAAAAPs2rYSgkJEQhISEX7JeQkCC73a6CggINHDhQkpSfny+73a7ExMRax6Smpmr48OFObcnJyUpNTdVtt93W8OIBAECz4BPfJouOjtaIESOUlpamF154QZI0depUjR492umbZL169VJGRoZuuOEGdezYUR07dnQ6j5+fn8LDw+v89hkAADAXn1hALUmZmZmKjY1VUlKSkpKSFBcXp5UrVzr1KS4ult1u91KFAADAF/nEzJAkBQcHa9WqVXX2MQyjzuPnWycEAADMy2dmhgAAADyBMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEzNZ8LQ0aNHlZqaKqvVKqvVqtTUVB07dqzOMVOmTJHFYnHa4uPjG6dgAADgE1p5u4D6SklJ0Q8//KCsrCxJ0tSpU5Wamqp//etfdY4bMWKEXnnlFcd+69atPVonAADwLT4RhoqKipSVlaW8vDwNGjRIkrRs2TIlJCSouLhYPXv2PO9Yf39/hYeHN1apAADAx/jEZbLc3FxZrVZHEJKk+Ph4Wa1W5eTk1Dl2w4YNCg0NVY8ePZSWlqYDBw7U2b+qqkoVFRVOGwAAaL58IgyVl5crNDS0RntoaKjKy8vPO27kyJHKzMzU559/rkWLFumrr77SNddco6qqqvOOycjIcKxLslqtioiIcMtnAAAATZNXw9CCBQtqLHD+7bZp0yZJksViqTHeMIxa28+5+eabNWrUKPXu3VtjxozRRx99pG+//VYffPDBecekp6fLbrc7ttLS0oZ/UAAA0GR5dc3Q9OnTNWHChDr7REVFqbCwUPv3769x7ODBgwoLC6v3+3Xu3FmRkZHatWvXefv4+/vL39+/3ucEAAC+zathKCQkRCEhIRfsl5CQILvdroKCAg0cOFCSlJ+fL7vdrsTExHq/3+HDh1VaWqrOnTu7XDMAAGhefGLNUHR0tEaMGKG0tDTl5eUpLy9PaWlpGj16tNM3yXr16qW1a9dKkk6cOKHZs2crNzdXe/fu1YYNGzRmzBiFhITohhtu8NZHAQAATYxPhCFJyszMVGxsrJKSkpSUlKS4uDitXLnSqU9xcbHsdrskqWXLltq+fbvGjh2rHj166NZbb1WPHj2Um5urtm3beuMjAACAJsgn7jMkScHBwVq1alWdfQzDcLwODAzUxx9/7OmyAACAj/OZmSEAAABPIAwBAABTIwwBAABTIwwBAABTIwwBAABTIwwBAABTIwwBAABTIwwBAABTIwwBAABTIwwBAABT85nHcQCe1qZNG7333ntO+wCA5o8wBPx/FotFQUFB3i4DANDIuEwGAABMjTAEAABMjTAEAABMjTAEAABMjTAEAABMjTAEAABMjTAEAABMjTAEAABMjTAEAABMjTAEAABMjTAEAABMjTAEAABMjQe1XoBhGJKkiooKL1cCAADq69zf7XN/x+tCGLqA48ePS5IiIiK8XAkAAPi9jh8/LqvVWmcfi1GfyGRi1dXV2rdvn9q2bSuLxeLtcuBhFRUVioiIUGlpqdq1a+ftcgC4ET/f5mIYho4fP64uXbqoRYu6VwUxM3QBLVq00CWXXOLtMtDI2rVrxy9LoJni59s8LjQjdA4LqAEAgKkRhgAAgKkRhoBf8ff316OPPip/f39vlwLAzfj5xvmwgBoAAJgaM0MAAMDUCEMAAMDUCEMAAMDUCENAA0RFRWnJkiWOfYvFonfffddr9QDwrKFDh+qBBx7wdhlwM8IQmpQDBw5o2rRpuvTSS+Xv76/w8HAlJycrNzdXUtMPG2VlZRo5cqS3ywB8hsViqXObMmWKt0uECXAHajQp48eP1+nTp/W///u/6tatm/bv36/PPvtMR44c8XZp9RIeHu7tEgCfUlZW5ni9evVqPfLIIyouLna0BQYGOvU/ffq0/Pz8Gq0+mAMzQ2gyjh07puzsbD355JMaNmyYIiMjNXDgQKWnp2vUqFGKioqSJN1www2yWCyO/d27d2vs2LEKCwtTUFCQrrrqKn366aeO86anpys+Pr7G+8XFxenRRx+VVPvU97hx45z+VXrgwAGNGTNGgYGB6tq1qzIzM2uc89czV3v37pXFYtGaNWs0bNgwXXTRRerTp49jluucnJwcDR48WIGBgYqIiNCMGTNUWVn5O//vAb4pPDzcsVmtVlksFsf+yZMn1b59e7355psaOnSoAgICtGrVKi1YsEBXXnml03mWLFni+J3w8ccfKyAgQMeOHXPqM2PGDA0ZMkSSdPjwYU2cOFGXXHKJLrroIsXGxur111936l9ZWanJkycrKChInTt31qJFi2rUv2rVKg0YMEBt27ZVeHi4UlJSdODAAbf9/0HjIAyhyQgKClJQUJDeffddVVVV1Tj+1VdfSZJeeeUVlZWVOfZPnDih6667Tp9++qm2bt2q5ORkjRkzRiUlJZKkSZMmKT8/X7t373ac6+uvv9b27ds1adKketc3ZcoU7d27V59//rnefvttLV26tF6/9ObNm6fZs2fLZrOpR48emjhxos6cOSNJ2r59u5KTk/WnP/1JhYWFWr16tbKzszV9+vR61wU0dw899JBmzJihoqIiJScnX7D/8OHD1b59e73zzjuOtrNnz+rNN990/MyfPHlS/fv31/vvv68dO3Zo6tSpSk1NVX5+vmPMnDlz9MUXX2jt2rX65JNPtGHDBm3evNnpvU6dOqXHH39c27Zt07vvvqs9e/Zwac8XGUAT8vbbbxsdOnQwAgICjMTERCM9Pd3Ytm2b47gkY+3atRc8T0xMjPHMM8849uPi4ozHHnvMsZ+enm5cddVVjv0hQ4YY999/v9M5xo4da9x6662GYRhGcXGxIcnIy8tzHC8qKjIkGYsXL661vj179hiSjJdeeslx/OuvvzYkGUVFRYZhGEZqaqoxdepUp/fduHGj0aJFC+Pnn3++4OcEmpNXXnnFsFqtjv1zP0NLlixx6vfoo48affr0cWpbvHixERkZ6difMWOGcc011zj2P/74Y6N169bGkSNHzvv+1113nTFr1izDMAzj+PHjRuvWrY033njDcfzw4cNGYGBgjd8Vv1ZQUGBIMo4fP17HJ0VTw8wQmpTx48dr3759WrdunZKTk7Vhwwb169dPK1asOO+YyspKzZ07VzExMWrfvr2CgoL0zTffOGaGpF9mh85d1jIMQ6+//vrvmhUqKipSq1atNGDAAEdbr1691L59+wuOjYuLc7zu3LmzJDlmlDZv3qwVK1Y4ZsWCgoKUnJys6upq7dmzp971Ac3Zr3/u6mvSpEnasGGD9u3bJ0nKzMzUddddpw4dOkj6ZaZo4cKFiouLU8eOHRUUFKRPPvnE8Xtj9+7dOnXqlBISEhznDA4OVs+ePZ3eZ+vWrRo7dqwiIyPVtm1bDR06VJKcfv+g6SMMockJCAjQtddeq0ceeUQ5OTmaMmWKY21PbebMmaN33nlHCxcu1MaNG2Wz2RQbG6tTp045+qSkpOjbb7/Vli1blJOTo9LSUk2YMMFxvEWLFjJ+82Sa06dPO16fO2axWH735/n1Ys9z46urqx3/nTZtmmw2m2Pbtm2bdu3apcsuu+x3vxfQHLVp08Zp/0I/r5I0cOBAXXbZZXrjjTf0888/a+3atbrlllscxxctWqTFixdr7ty5+vzzz2Wz2ZScnOz4vfHb89emsrJSSUlJCgoK0qpVq/TVV19p7dq1kuT0+wdNH98mQ5MXExPjWJTs5+ens2fPOh3fuHGjpkyZohtuuEHSL2uI9u7d69Tnkksu0eDBg5WZmamff/5Zw4cPV1hYmON4p06dnL7VcvbsWe3YsUPDhg2TJEVHR+vMmTPatGmTBg4cKEkqLi6usUDz9+rXr5++/vprde/evUHnAcykU6dOKi8vl2EYjn9g2Gy2Gv1SUlKUmZmpSy65RC1atNCoUaMcxzZu3KixY8c6AlJ1dbV27dql6OhoSVL37t3l5+envLw8XXrppZKko0eP6ttvv3Uswv7mm2906NAhPfHEE4qIiJAkbdq0yWOfG57DzBCajMOHD+uaa67RqlWrVFhYqD179uitt97SU089pbFjx0r65SaHn332mcrLy3X06FFJv/zSWrNmjWNWJSUlxTHz8muTJk3SG2+8obfeesvpX4iSdM011+iDDz7QBx98oG+++Ub33HOPU9Dp2bOnRowYobS0NOXn52vz5s268847a3zt9/d66KGHlJubq3vvvVc2m027du3SunXrdN999zXovEBzNnToUB08eFBPPfWUdu/erWeffVYfffRRjX6TJk3Sli1btHDhQt14440KCAhwHOvevbvWr1+vnJwcFRUVadq0aSovL3ccDwoK0h133KE5c+bos88+044dOzRlyhS1aPF/fzYvvfRStW7dWs8884z+/e9/a926dXr88cc9++HhEYQhNBlBQUEaNGiQFi9erMGDB6t3796aP3++0tLS9M9//lPSL1Pb69evV0REhPr27StJWrx4sTp06KDExESNGTNGycnJ6tevX43z//nPf9bhw4f1008/ady4cU7Hbr/9dt16662aPHmyhgwZoq5duzpmhc555ZVXFBERoSFDhuhPf/qTpk6dqtDQ0AZ95ri4OH355ZfatWuXrr76avXt21fz5893rC0CUFN0dLSWLl2qZ599Vn369FFBQYFmz55do9/ll1+uq666SoWFhTXWCM6fP1/9+vVTcnKyhg4dqvDw8Bq/F/72t79p8ODBuv766zV8+HD98Y9/VP/+/R3HO3XqpBUrVuitt95STEyMnnjiCf3973/3yGeGZ1mM+lwYBQAAaKaYGQIAAKZGGAIAAKZGGAIAAKZGGAIAAKZGGAIAAKZGGAIAAKZGGAIAAKZGGAIAAKZGGAIAAKZGGALQLOXk5Khly5YaMWKEU/vevXtlsVgcm9VqVXx8vP71r39J+uW5V78+/tstKirKC58GgCcRhgA0Sy+//LLuu+8+ZWdnq6SkpMbxTz/9VGVlZcrPz9fAgQM1fvx47dixQ2vWrFFZWZnKyspUUFDg1LesrExfffVVY38UAB5GGALQ7FRWVurNN9/U3XffrdGjR2vFihU1+nTs2FHh4eHq1auXFi5cqNOnT+uLL75QcHCwwsPDFR4erk6dOjn1/XUbgOaDMASg2Vm9erV69uypnj176pZbbtErr7yi8z2T+vTp01q2bJkkyc/PrzHLBNBEtPJ2AQDgbsuXL9ctt9wiSRoxYoROnDihzz77TMOHD3f0SUxMVIsWLfTzzz+rurpaUVFRuummm7xVMgAvYmYIQLNSXFysgoICTZgwQZLUqlUr3XzzzXr55Zed+q1evVpbt27VunXr1L17d7300ksKDg72RskAvIyZIQDNyvLly3XmzBldfPHFjjbDMOTn56ejR4862iIiInT55Zfr8ssvV1BQkMaPH6+dO3cqNDTUG2UD8CJmhgA0G2fOnNGrr76qRYsWyWazObZt27YpMjJSmZmZtY4bMmSIevfurYULFzZyxQCaAsIQgGbj/fff19GjR3XHHXeod+/eTtuNN96o5cuXn3fsrFmz9MILL+jHH39sxIoBNAWEIQDNxvLlyzV8+HBZrdYax8aPHy+bzaYjR47UOnb06NGKiopidggwIYtxvu+bAgAAmAAzQwAAwNQIQwAAwNQIQwAAwNQIQwAAwNQIQwAAwNQIQwAAwNQIQwAAwNQIQwAAwNQIQwAAwNQIQwAAwNQIQwAAwNT+HxmRKTPFKajDAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Create a plot showing the effect of ART on EDZ\n",
"q4_plot = sns.barplot(data = data, x = 'ART', y = 'exec_domain_z') # SOLUTION"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "07fde2af-cad6-4b78-b88d-54d027545af9",
"metadata": {
"tags": [
"otter_assign_solution_cell"
]
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Source
\n",
"
ddof1
\n",
"
ddof2
\n",
"
F
\n",
"
p-unc
\n",
"
np2
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
ART
\n",
"
1
\n",
"
323
\n",
"
7.809699
\n",
"
0.005507
\n",
"
0.023608
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Source ddof1 ddof2 F p-unc np2\n",
"0 ART 1 323 7.809699 0.005507 0.023608"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Perform an ANOVA testing the impact of ART on EDZ\n",
"q4_res = pg.anova(data, dv = 'exec_domain_z', between = 'ART') # SOLUTION\n",
"q4_res"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "46ef6bde-3ab5-43f9-bab2-5fc4dc400688",
"metadata": {
"tags": [
"otter_assign_solution_cell"
]
},
"outputs": [],
"source": [
"# Does ART have a significant impact on Executive Domain? 'yes' or 'no'?\n",
"\n",
"q4_art_impact = 'yes' # SOLUTION"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e134fd24",
"metadata": {
"deletable": false,
"editable": false
},
"outputs": [],
"source": [
"grader.check(\"q4_art_test\")"
]
},
{
"cell_type": "markdown",
"id": "8f89b18b-531d-42a1-a96a-5f5f95449fb9",
"metadata": {},
"source": [
"### With correction\n",
"\n",
"Nicely `pingouin` has something built right in to do this whole process."
]
},
{
"cell_type": "code",
"execution_count": 37,
"id": "5377a300-35e4-472b-b960-1bc8c1d59001",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.barplot(x=data['ART'], y=res.residuals_)\n",
"\n",
"# An ANCOVA testing the impact of ART on EDZ\n",
"# after correcting for the impace of age, education and YS\n",
"pg.ancova(data,\n",
" dv = 'exec_domain_z',\n",
" between = 'ART',\n",
" covar=['YearsSeropositive', 'education', 'age'])"
]
},
{
"cell_type": "markdown",
"id": "1409e6f5-23e5-4436-a9a6-0242f4c36c7e",
"metadata": {},
"source": [
"We can notice that after correction for covaraites the F-value has increased and the p-value has decreased.\n",
"This means the analysis is attributing more difference to race after correction and is more sure this is not due to noise."
]
},
{
"cell_type": "markdown",
"id": "ff14833e-bda0-48a2-9c26-d2e530824231",
"metadata": {},
"source": [
"The _advantage_ of using the `pg.ancova` function is that you can easily and quickly do your analysis.\n",
"The _disadvantage_ is that you cannot examine the internal regression for Normality and Homoscedasticity."
]
},
{
"cell_type": "markdown",
"id": "fa572f6b-0e82-4a31-ab30-4c267bfb5be0",
"metadata": {},
"source": [
"But, what if we wanted to have a covariate that is a category like race?"
]
},
{
"cell_type": "markdown",
"id": "5f8a699c-8439-40c4-9728-a391a5785573",
"metadata": {},
"source": [
"## Regression with categories"
]
},
{
"cell_type": "markdown",
"id": "89316dac-b3db-444d-9bc1-9136c1e9970c",
"metadata": {},
"source": [
"So, how do you do regression with a category like race?\n",
"\n",
"Could it be as simple as adding it the `X` matrix?"
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "8fbd4b6c-dbf6-4eb2-846f-ee978ab688a8",
"metadata": {},
"outputs": [],
"source": [
"# X = data[['YearsSeropositive', 'education', 'age', 'race']]\n",
"# y = data['processing_domain_z']\n",
"# res = pg.linear_regression(X, y)\n",
"# res"
]
},
{
"cell_type": "markdown",
"id": "6199f0af-45b8-43ef-946e-1ea31145f7a7",
"metadata": {},
"source": [
"Would have been nice, but we need to get a little tricky and use _dummy_ variables.\n",
"\n",
"In their simplest terms, dummy variables are binary representations of categories.\n",
"Like so."
]
},
{
"cell_type": "code",
"execution_count": 39,
"id": "c2cd028f-1caf-4797-841d-0d508c7f9afd",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
AA
\n",
"
C
\n",
"
H
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
True
\n",
"
False
\n",
"
False
\n",
"
\n",
"
\n",
"
1
\n",
"
True
\n",
"
False
\n",
"
False
\n",
"
\n",
"
\n",
"
2
\n",
"
True
\n",
"
False
\n",
"
False
\n",
"
\n",
"
\n",
"
3
\n",
"
True
\n",
"
False
\n",
"
False
\n",
"
\n",
"
\n",
"
4
\n",
"
True
\n",
"
False
\n",
"
False
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" AA C H\n",
"0 True False False\n",
"1 True False False\n",
"2 True False False\n",
"3 True False False\n",
"4 True False False"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.get_dummies(data['race']).head()"
]
},
{
"cell_type": "code",
"execution_count": 40,
"id": "36adb5a0-9709-402a-95e8-ec24c68524a2",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/tljh/user/lib/python3.9/site-packages/pingouin/regression.py:420: UserWarning: Design matrix supplied with `X` parameter is rank deficient (rank 6 with 7 columns). That means that one or more of the columns in `X` are a linear combination of one of more of the other columns.\n",
" warnings.warn(\n"
]
},
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
names
\n",
"
coef
\n",
"
se
\n",
"
T
\n",
"
pval
\n",
"
r2
\n",
"
adj_r2
\n",
"
CI[2.5%]
\n",
"
CI[97.5%]
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
Intercept
\n",
"
-0.194
\n",
"
0.294
\n",
"
-0.661
\n",
"
0.509
\n",
"
0.453
\n",
"
0.444
\n",
"
-0.772
\n",
"
0.383
\n",
"
\n",
"
\n",
"
1
\n",
"
YearsSeropositive
\n",
"
-0.046
\n",
"
0.003
\n",
"
-14.133
\n",
"
0.000
\n",
"
0.453
\n",
"
0.444
\n",
"
-0.052
\n",
"
-0.039
\n",
"
\n",
"
\n",
"
2
\n",
"
education
\n",
"
-0.054
\n",
"
0.019
\n",
"
-2.795
\n",
"
0.006
\n",
"
0.453
\n",
"
0.444
\n",
"
-0.092
\n",
"
-0.016
\n",
"
\n",
"
\n",
"
3
\n",
"
age
\n",
"
0.031
\n",
"
0.005
\n",
"
5.868
\n",
"
0.000
\n",
"
0.453
\n",
"
0.444
\n",
"
0.021
\n",
"
0.041
\n",
"
\n",
"
\n",
"
4
\n",
"
AA
\n",
"
0.410
\n",
"
0.104
\n",
"
3.941
\n",
"
0.000
\n",
"
0.453
\n",
"
0.444
\n",
"
0.205
\n",
"
0.615
\n",
"
\n",
"
\n",
"
5
\n",
"
C
\n",
"
-0.583
\n",
"
0.149
\n",
"
-3.914
\n",
"
0.000
\n",
"
0.453
\n",
"
0.444
\n",
"
-0.876
\n",
"
-0.290
\n",
"
\n",
"
\n",
"
6
\n",
"
H
\n",
"
-0.021
\n",
"
0.132
\n",
"
-0.162
\n",
"
0.871
\n",
"
0.453
\n",
"
0.444
\n",
"
-0.282
\n",
"
0.239
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" names coef se T pval r2 adj_r2 CI[2.5%] \\\n",
"0 Intercept -0.194 0.294 -0.661 0.509 0.453 0.444 -0.772 \n",
"1 YearsSeropositive -0.046 0.003 -14.133 0.000 0.453 0.444 -0.052 \n",
"2 education -0.054 0.019 -2.795 0.006 0.453 0.444 -0.092 \n",
"3 age 0.031 0.005 5.868 0.000 0.453 0.444 0.021 \n",
"4 AA 0.410 0.104 3.941 0.000 0.453 0.444 0.205 \n",
"5 C -0.583 0.149 -3.914 0.000 0.453 0.444 -0.876 \n",
"6 H -0.021 0.132 -0.162 0.871 0.453 0.444 -0.282 \n",
"\n",
" CI[97.5%] \n",
"0 0.383 \n",
"1 -0.039 \n",
"2 -0.016 \n",
"3 0.041 \n",
"4 0.615 \n",
"5 -0.290 \n",
"6 0.239 "
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Extracting the same continious variables\n",
"X = data[['YearsSeropositive', 'education', 'age']]\n",
"\n",
"# Creating new dummy variables for race\n",
"dummy_vals = pd.get_dummies(data['race']).astype(float)\n",
"\n",
"\n",
"# Adding them the end\n",
"X = pd.concat([X, dummy_vals], axis=1)\n",
"\n",
"y = data['exec_domain_z']\n",
"\n",
"res = pg.linear_regression(X, y)\n",
"res.round(3)"
]
},
{
"cell_type": "markdown",
"id": "be9ac92a-18be-4d29-9408-9a2ae605e8fb",
"metadata": {},
"source": [
"This _Warning_ is telling us that our model has fallen into the _dummy variable trap_.\n",
"The dummy variable trap occurs when dummy variables created for categorical data in a regression model are perfectly collinear, meaning one variable can be predicted from the others, leading to redundancy.\n",
"This happens because the inclusion of all dummy variables for a category along with a constant term (intercept) creates a situation where the sum of the dummy variables plus the intercept equals one, introducing perfect multicollinearity.\n",
"To avoid this, one dummy variable should be dropped to serve as the reference category, ensuring the model's design matrix is full rank and the regression coefficients are estimable and interpretable."
]
},
{
"cell_type": "code",
"execution_count": 41,
"id": "635fc2b2-2c6e-4e54-afd5-0731a721840b",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
],
"text/plain": [
" W pval normal\n",
"0 0.832024 0.659672 True"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pg.normality(res.residuals_, method='normaltest')"
]
},
{
"cell_type": "markdown",
"id": "77d9739b-d623-40f1-ade2-3ab1b755d7b2",
"metadata": {},
"source": [
"Perfect, now we know that our final model passes the _Normal Distribution of Errors_ assumption."
]
},
{
"cell_type": "markdown",
"id": "63741a0f-627f-4981-b5c0-ef8b302d3335",
"metadata": {},
"source": [
"What about understanding which parameters have the largest impact on the model?\n",
"Stated another way: which features are most important to determing EDZ?\n",
"\n",
"Nicely, `pingouin` can do this for us."
]
},
{
"cell_type": "code",
"execution_count": 47,
"id": "871beb97-cdcc-44ae-bb13-4ed78f36d495",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
],
"text/plain": [
" names coef se T pval r2 \\\n",
"1 YearsSeropositive -0.044294 0.003222 -13.746688 4.748977e-34 0.46984 \n",
"4 C -0.939704 0.114749 -8.189228 6.513749e-15 0.46984 \n",
"3 age 0.039215 0.005813 6.745778 7.231020e-11 0.46984 \n",
"2 education -0.059910 0.019281 -3.107223 2.059458e-03 0.46984 \n",
"7 Truvada 0.314984 0.098327 3.203452 1.495929e-03 0.46984 \n",
"5 H -0.382354 0.146409 -2.611538 9.442348e-03 0.46984 \n",
"\n",
" adj_r2 CI[2.5%] CI[97.5%] relimp relimp_perc \n",
"1 0.458133 -0.050633 -0.037954 0.275883 58.718414 \n",
"4 0.458133 -1.165470 -0.713939 0.075652 16.101683 \n",
"3 0.458133 0.027777 0.050652 0.039614 8.431478 \n",
"2 0.458133 -0.097844 -0.021975 0.039358 8.376948 \n",
"7 0.458133 0.121529 0.508440 0.022870 4.867595 \n",
"5 0.458133 -0.670411 -0.094297 0.015979 3.400943 "
]
},
"execution_count": 48,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# After filtering and sorting\n",
"res_with_imp.query('pval<0.01').sort_values('relimp_perc', ascending=False)"
]
},
{
"cell_type": "markdown",
"id": "dea90faa-7e62-470e-8b38-bc4ec6c4b94d",
"metadata": {},
"source": [
"## Over fitting"
]
},
{
"cell_type": "markdown",
"id": "34122ab1-a41f-40ae-8404-13952ec40432",
"metadata": {},
"source": [
"In principle we can continue to add more and more variables to the `X` and just let the computer figure out the p-value of each.\n",
"\n",
"There are a few reasons we shouldn't take this tack.\n",
" - **Overfitting** : A larger model will **ALWAYS** fit better than a smaller model. This doesn't mean the larger model is **better** at predicting _all samples_, it just means it fits **these** samples better.\n",
" - **Explainability** : Large models with many parameters are difficult to explain and reason about. We are biologists, not data scientists. Our job is to reason about the _result_ of the analysis, not create the best fitting model.\n",
" - **Statistical power** : As you add more noise features you lose the power to detect real features.\n",
"\n",
"So, you should limit yourself to only those features that you think are biologically meaningful."
]
},
{
"cell_type": "markdown",
"id": "f85001ad-e7d5-4fa1-acb4-bf831e249167",
"metadata": {},
"source": [
"When planning experiments there are a couple of things you can do to avoid overfitting:\n",
" - **Sample size** : While there is no strict rule, you should plan to have _at least_ 10 samples per feature in your model.\n",
" - **Even sampling** : It is ideal to have a roughly equal representation of the entire parameter space. If you have categories, you should have an equal number of each. If you have continious data, you should have both high and low values. If you have many parameters, you should have an equal number of each of their interactions as well.\n",
"\n",
"These are good guidelines for all model-fitting style analyses."
]
},
{
"cell_type": "code",
"execution_count": 49,
"id": "c7b277ae-b218-400b-bf21-2dbe1d4dfd72",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Features: 7\n",
"Obs: 325\n"
]
}
],
"source": [
"print('Features:', len(X.columns))\n",
"print('Obs:', len(X.index))"
]
},
{
"cell_type": "markdown",
"id": "a555f8e6-5863-4b26-bff3-8cef65f03861",
"metadata": {},
"source": [
"## Even more regression"
]
},
{
"cell_type": "markdown",
"id": "877c659e-f08a-4108-bdd9-6a4c1144fed9",
"metadata": {},
"source": [
"There are a number of regression based tools in `pingouin` that we didn't cover that may be useful to explore.\n",
" - `pg.logistic_regression` : This works similar to linear regression but is for binary dependent variables.\n",
"Each feature is regressed to create an equation that estimates the likelihood of the `dv` being `True`.\n",
" - `pg.partial_corr` : Like the ANCOVA, this is a tool for removing the effect of covariates and then calculating a correlation coefficient.\n",
" - `pg.rm_corr` : Correlation with repeated measures. This is useful if you have measured the same _sample_ multiple times and want to account for intermeasurment variability.\n",
" - `pg.mediation_analysis` : Tests the hypothesis that the independent variable `X` influences the dependent variable `Y` by a change in mediator `M`; like so `X -> M -> Y`.\n",
"This is useful to disentangle causal effects from covariation."
]
},
{
"cell_type": "markdown",
"id": "01aa3342",
"metadata": {},
"source": [
"---------------------------------------------"
]
},
{
"cell_type": "markdown",
"id": "a34057e2-823a-4c03-a124-ff10e5db70ea",
"metadata": {
"tags": [
"remove_cell"
]
},
"source": [
"## Submission\n",
"\n",
"You do not need to submit this walkthrough notebook.\n",
"Simply complete the quiz."
]
},
{
"cell_type": "code",
"execution_count": 50,
"id": "74b8cf4e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": []
},
"execution_count": 50,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"grader.check_all()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
},
"otter": {
"assignment_name": "Module09_walkthrough"
}
},
"nbformat": 4,
"nbformat_minor": 5
}